Controlled orientation of ellipsoidal fullerene C70 in carbon nanotubes

Density functional theory calculations predict two orientations for ellipsoidal C70 fullerenes inside single-walled carbon nanotubes (SWNTs) of different sizes: transverse orientation for C70 in (11,11) nanotubes (d=14.9 A) and longitudinal orientation for C70 in (10,10) nanotubes (d=13.6 A). SWNTs with these diameters have been prepared and filled with the C70 fullerenes, and characterized by Raman spectroscopy and high-resolution transmission electron microscopy, showing the orientations predicted by theory.

[1]  Dong Jae Bae,et al.  High-Yield Purification Process of Singlewalled Carbon Nanotubes , 2001 .

[2]  S. Iijima,et al.  Smallest limit of tube diameters for encasing of particular fullerenes determined by radial breathing mode Raman scattering , 2001 .

[3]  M. Monthioux Filling single-wall carbon nanotubes , 2002 .

[4]  Brian W. Smith,et al.  High-yield synthesis and one-dimensional structure of C60 encapsulated in single-wall carbon nanotubes , 2002 .

[5]  A. T. Johnson,et al.  Mapping the One-Dimensional Electronic States of Nanotube Peapod Structures , 2002, Science.

[6]  Thomas Frauenheim,et al.  Atomistic simulations of complex materials: ground-state and excited-state properties , 2002 .

[7]  Miroslav Hodak,et al.  Fullerenes inside carbon nanotubes and multi-walled carbon nanotubes: optimum and maximum sizes , 2001 .

[8]  Malcolm L. H. Green,et al.  Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes , 2000 .

[9]  Susumu Okada,et al.  Electron-state control of carbon nanotubes by space and encapsulated fullerenes , 2003 .

[10]  Malcolm L. H. Green,et al.  The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes , 2000 .

[11]  Toshiya Okazaki,et al.  Electron diffraction study of one-dimensional crystals of fullerenes , 2001 .

[12]  P. Hyldgaard,et al.  Density-functional calculation of van der Waals forces for free-electron-like surfaces , 2001 .

[13]  Andrew P. Horsfield,et al.  Efficient AB Initio Tight Binding , 1997 .

[14]  A. Rochefort Electronic and transport properties of carbon nanotube peapods , 2003 .

[15]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[16]  Gavin W. Morley,et al.  Nanoscale solid-state quantum computing , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  K. Chang,et al.  Electronic and transport properties of single-wall carbon nanotubes encapsulating fullerene-based structures , 2001 .

[18]  Hideaki Fujitani,et al.  Transferable atomic-type orbital basis sets for solids , 2000 .

[19]  T. Okazaki,et al.  Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes , 2002, Nature.

[20]  P. Madden,et al.  Growth of ionic crystals in carbon nanotubes. , 2001, Journal of the American Chemical Society.

[21]  Miroslav Hodak,et al.  Van der Waals binding energies in graphitic structures , 2002 .

[22]  M. Nath,et al.  Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles , 2000 .

[23]  Kirkland,et al.  Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes , 2000, Science.