Semi‐global stabilization of nonlinear systems by nonsmooth output feedback

SUMMARY Semi-global stabilization by output feedback is studied for a class of nonuniformly observable and nonsmoothly stabilizable nonlinear systems. The contribution of this paper is to point out that most of the restrictive growth conditions required in the previous work can be relaxed or removed if a less demanding control objective, namely, semi-global instead of global stabilization is sought. In particular, it is proved that without imposing restrictive conditions, semi-global stabilization by nonsmooth output feedback can be achieved for a chain of odd power integrators perturbed by a smooth triangular vector field, although it is neither smoothly stabilizable nor uniformly observable. Extensions to nonstrictly triangular systems are also discussed in the two-dimensional case. Several examples are provided to illustrate the key features of the proposed semi-global output feedback controllers. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Wei Lin,et al.  TAKING ADVANTAGE OF HOMOGENEITY: A UNIFIED FRAMEWORK FOR OUTPUT FEEDBACK CONTROL OF NONLINEAR SYSTEMS , 2007 .

[2]  Arthur J. Krener,et al.  Locally Convergent Nonlinear Observers , 2003, SIAM J. Control. Optim..

[3]  W. Respondek,et al.  Feedback Equivalence of Planar Systems and Stabilizability , 1990 .

[4]  H. Khalil,et al.  Semiglobal stabilization of a class of nonlinear systems using output feedback , 1993, IEEE Trans. Autom. Control..

[5]  Wei Lin,et al.  Robust output feedback stabilization of uncertain nonlinear systems with uncontrollable and unobservable linearization , 2005, IEEE Transactions on Automatic Control.

[6]  Wei Lin,et al.  Global stabilization of cascade systems by C0 partial-state feedback , 2002, IEEE Trans. Autom. Control..

[7]  Wei Lin,et al.  On p-normal forms of nonlinear systems , 2003, IEEE Trans. Autom. Control..

[8]  A. Teel,et al.  Global stabilizability and observability imply semi-global stabilizability by output feedback , 1994 .

[9]  Alberto Isidori,et al.  A tool for semi-global stabilization of uncertain non-minimum-phase nonlinear systems via output feedback , 2000, IEEE Trans. Autom. Control..

[10]  M. Kawski Stabilization of nonlinear systems in the plane , 1989 .

[11]  Wei Lin,et al.  On semi-global stabilizability of MIMO nonlinear systems by output feedback , 2006, Autom..

[12]  Eduardo Aranda-Bricaire,et al.  Constructive nonsmooth stabilization of triangular systems , 1999 .

[13]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[14]  Wei Lin,et al.  Homogeneous observers, iterative design, and global stabilization of high-order nonlinear systems by smooth output feedback , 2004, IEEE Trans. Autom. Control..

[15]  W. P. Dayawansa,et al.  Recent Advances in The Stabilization Problem for Low Dimensional Systems , 1992 .

[16]  W. Dayawansa,et al.  Global stabilization by output feedback: examples and counterexamples , 1994 .

[17]  J. Tsinias,et al.  Explicit formulas of feedback stabilizers for a class of triangular systems with uncontrollable linearization , 1999 .

[18]  Wei Lin,et al.  Recursive Observer Design, Homogeneous Approximation, and Nonsmooth Output Feedback Stabilization of Nonlinear Systems , 2006, IEEE Transactions on Automatic Control.

[19]  W. P. Dayawansa,et al.  Asymptotic stabilization of a class of smooth two-dimensional systems , 1990 .

[20]  J. Coron,et al.  Adding an integrator for the stabilization problem , 1991 .

[21]  A. Teel,et al.  Tools for Semiglobal Stabilization by Partial State and Output Feedback , 1995 .

[22]  Wei Lin,et al.  A continuous feedback approach to global strong stabilization of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[23]  I. Kolmanovsky,et al.  Nonsmooth stabilization of an underactuated unstable two degrees of freedom mechanical system , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[24]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .