Filter-Based Feedback Control for a Class of Markovian Open Quantum Systems

This letter considers target state preparation for Markovian open quantum systems subject to continuous measurement. Conditions on invariant and attractive subspaces are investigated, which ensure the stabilization of the target state/subspace. For a class of open quantum systems with time delay in the feedback loop, a bang–bang-like control law is proposed, and the stability of the feedback control strategy is proved. An example of four-level Markovian open quantum systems is presented to demonstrate the effectiveness of the proposed control strategy.

[1]  Claudio Altafini,et al.  Stabilization of Stochastic Quantum Dynamics via Open- and Closed-Loop Control , 2011, IEEE Transactions on Automatic Control.

[2]  Mazyar Mirrahimi,et al.  Stabilizing Feedback Controls for Quantum Systems , 2005, SIAM J. Control. Optim..

[3]  Lorenza Viola,et al.  Quantum Markovian Subsystems: Invariance, Attractivity, and Control , 2007, IEEE Transactions on Automatic Control.

[4]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[5]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[6]  X. X. Yi,et al.  Lyapunov control on quantum open systems in decoherence-free subspaces , 2010 .

[7]  H. Zeh On the interpretation of measurement in quantum theory , 1970 .

[8]  Matthew R. James,et al.  Quantum feedback control of linear stochastic systems with feedback-loop time delays , 2015, Autom..

[9]  Sen Kuang,et al.  Rapid Lyapunov control for decoherence-free subspaces of Markovian open quantum systems , 2017, J. Frankl. Inst..

[10]  Riccardo Lucchese,et al.  Hamiltonian Control of Quantum Dynamical Semigroups: Stabilization and Convergence Speed , 2012, IEEE Transactions on Automatic Control.

[11]  Naoki Yamamoto,et al.  Control of Quantum Systems Despite Feedback Delay , 2007, IEEE Transactions on Automatic Control.

[12]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[13]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[14]  Chunfeng Wu,et al.  Driving quantum systems into decoherence-free subspaces by Lyapunov control , 2009, 0908.1048.

[15]  Sen Kuang,et al.  Lyapunov-Based Feedback Preparation of GHZ Entanglement of $N$ -Qubit Systems , 2017, IEEE Transactions on Cybernetics.

[16]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[17]  H. J. Kushner,et al.  Stochastic Stability , 2005 .