Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials

Abstract The main object of this paper is to give analogous definitions of Apostol type (see [T.M. Apostol, On the Lerch Zeta function, Pacific J. Math. 1 (1951) 161–167] and [H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000) 77–84]) for the so-called Apostol–Bernoulli numbers and polynomials of higher order. We establish their elementary properties, derive several explicit representations for them in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) Zeta function, and deduce their special cases and applications which are shown here to lead to the corresponding results for the classical Bernoulli numbers and polynomials of higher order.