PSO Assisted Multiuser Detection for DS-CDMA Communication Systems

In this chapter, a heuristic perspective for the multiuser detection problem in the uplink of direct sequence code division multiple access (DS-CDMA) systems is discussed. In particular, the particle swarm optimization multiuser detector (PSO-MuD) is analyzed regarding several figures of merit, such as symbol error rate, near-far and channel error estimation robustness, and computational complexity aspects. The PSO-MuD is extensively evaluated and characterized under different channel scenarios: additive white Gaussian noise (AWGN), single input single/multiple output (SISO/SIMO) flat Rayleigh, and frequency selective (multipath) Rayleigh channels. Although literature presents single-objective (SOO) and multi-objective optimization (MOO) approaches to deal with multiuser detection problem, in this chapter the single-objective optimization criterion is extensively used, since its application requirement is simpler than the MOO, and its performance results for the proposed optimization problem are quite satisfactory. Nevertheless, the MOO is shortly addressed as an alternative approach. Furthermore, the complexity × performance trade-off of the PSOMuD is carefully analyzed via Monte-Carlo simulation (MCS), and the complexity reduction concerning the optimum multiuser detector (MuD) is quantified. Simulation results show that, after convergence, the performance reached by the PSO-MuD is much better than the conventional detector (CD), and somewhat close to the single user bound (SuB), having computational complexity substantially lower than OMuD.

[1]  Jorma Lilleberg,et al.  Genetic algorithms for multiuser detection in synchronous CDMA , 1997, Proceedings of IEEE International Symposium on Information Theory.

[2]  Hang Long,et al.  WLC06-6: PSO Selection of Surviving Nodes in QRM Detection for MIMO Systems , 2006, IEEE Globecom 2006.

[3]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[4]  Xiaofeng Wang,et al.  Semidefinite programming relaxation approach for multiuser detection of QAM signals , 2007, IEEE Transactions on Wireless Communications.

[5]  Ying Zhao,et al.  Particle swarm optimization algorithm in signal detection and blind extraction , 2004, 7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings..

[6]  Hean-Teik Chuah,et al.  Multiuser detection for DS-CDMA systems using evolutionary programming , 2003, IEEE Communications Letters.

[7]  Taufik Abrão,et al.  Local search multiuser detection , 2009 .

[8]  John G. Proakis,et al.  Digital Communications , 1983 .

[9]  Pak-Chung Ching,et al.  Semidefinite relaxation based multiuser detection for M-ary PSK multiuser systems , 2004, IEEE Trans. Signal Process..

[10]  P.J.E. Jeszensky,et al.  Simplified Local Search Algorithm for Multiuser Detection in Multipath Rayleigh Channels , 2007, 2007 16th IST Mobile and Wireless Communications Summit.

[11]  Taufik Abrão,et al.  Weighting particle swarm, simulation annealing and local search optimization for S/MIMO MC-CDMA systems , 2008, 2008 IEEE Swarm Intelligence Symposium.

[12]  Piero Castoldi Multiuser Detection in CDMA Mobile Terminals , 2002 .

[13]  F. Ciriaco,et al.  Particle Swarm and Quantum Particle Swarm Optimization Applied to DS/CDMA Multiuser Detection in Flat Rayleigh Channels , 2006, 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications.

[14]  Lin Yang,et al.  Particle-Swarm-Optimization-Based Multiuser Detector for CDMA Communications , 2007, IEEE Transactions on Vehicular Technology.

[15]  S.I. Shah,et al.  Heuristics Assisted Detection in High Speed Wireless Communication Systems , 2006, 2006 IEEE International Multitopic Conference.

[16]  Nikos D. Sidiropoulos,et al.  A Semidefinite Relaxation Approach to MIMO Detection for High-Order QAM Constellations , 2006, IEEE Signal Processing Letters.

[17]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[18]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[19]  Peng Zhou,et al.  MIMO Detection of 16-QAM Signaling Based on Semidefinite Relaxation , 2007, IEEE Signal Processing Letters.

[20]  S.L. Hijazi,et al.  Novel low-complexity DS-CDMA multiuser detector based on ant colony optimization , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[21]  S. Moshavi,et al.  Multi-user detection for DS-CDMA communications , 1996, IEEE Commun. Mag..

[22]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[23]  Kadri Hacioglu,et al.  Multiuser detection using a genetic algorithm in CDMA communications systems , 2000, IEEE Trans. Commun..

[24]  Andreas Antoniou,et al.  A near-optimal multiuser detector for DS-CDMA systems using semidefinite programming relaxation , 2003, IEEE Trans. Signal Process..

[25]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[26]  B.A. Angelico,et al.  Weighting Particle Swarm Optimization SIMO MC-CDMA Multiuser Detectors , 2008, 2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications.

[27]  Zhiwei Mao,et al.  Multiuser detection for MC-CDMA system with M-QAM using semidefinite programming relaxation , 2005, PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005..

[28]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[29]  K. Sam Shanmugan,et al.  Simulation of Communication Systems , 1992 .

[30]  Taufik Abrão,et al.  S/MIMO MC-CDMA Heuristic Multiuser Detectors Based on Single-Objective Optimization , 2010, Wirel. Pers. Commun..

[31]  Heng Siong Lim,et al.  An efficient local search heuristics for asynchronous multiuser detection , 2003, IEEE Communications Letters.

[32]  Jack M. Holtzman,et al.  Analysis of a simple successive interference cancellation scheme in a DS/CDMA system , 1994, IEEE J. Sel. Areas Commun..

[33]  Youyun Xu,et al.  A Novel Quadratic Programming Model for Soft-Input Soft-Output MIMO Detection , 2007, IEEE Signal Processing Letters.

[34]  Taufik Abrão,et al.  DS/CDMA Multiuser Detection with Evolutionary Algorithms , 2006, J. Univers. Comput. Sci..

[35]  H. Vincent Poor,et al.  Probability of error in MMSE multiuser detection , 1997, IEEE Trans. Inf. Theory.

[36]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[37]  Lajos Hanzo,et al.  Antenna-diversity-assisted genetic-algorithm-based multiuser detection schemes for synchronous CDMA systems , 2003, IEEE Trans. Commun..

[38]  L. Rasmussen,et al.  Multiuser detection in CDMA - a comparison of relaxations, exact, and heuristic search methods , 2004, IEEE Transactions on Wireless Communications.

[39]  P.J.E. Jeszensky,et al.  Evolutionary programming with cloning and adaptive cost function applied to multi-user DS-CDMA systems , 2004, Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738).

[40]  Ami Wiesel,et al.  Semidefinite relaxation for detection of 16-QAM signaling in MIMO channels , 2005, IEEE Signal Processing Letters.

[41]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[42]  Taufik Abrão,et al.  Particle swarm optimization assisted multiuser detector for M-QAM DS/CDMA systems , 2008, 2008 IEEE Swarm Intelligence Symposium.

[43]  Zhi-Quan Luo,et al.  Quasi-maximum-likelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA , 2002, IEEE Trans. Signal Process..

[44]  Junyan Wang,et al.  Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization , 2011, ICSI.

[45]  Alexandra Duel-Hallen,et al.  A family of multiuser decision-feedback detectors for asynchronous code-division multiple-access channels , 1995, IEEE Trans. Commun..

[46]  Sergio Verdú,et al.  Computational complexity of optimum multiuser detection , 1989, Algorithmica.