Clip-based hierarchical representation for near-duplicate video detection

Searching for near-duplicate content has become an important task in many multimedia applications, for example, images, videos and music. The ability to detect duplicate videos plays an important role in several video applications, for example, effective video search, copyright infringement and the study on users’ behaviour on near-duplicate video production. Current web video search systems rely only on text keywords and, hence, fail to detect many duplicate videos. In this paper, we analyse the problem of near-duplicate detection and propose a practical solution for real-time large-scale video retrieval. Unlike many existing approaches which make use of video frames or key-frames, our solution is based on a more discriminative signature of video clips. The feature used in this paper is an extension of ordinal measures which have proven to be robust to change in brightness, compression formats and compression ratios. For efficient retrieval, we propose to use multi-probe locality sensitive hashing (MPLSH) to index the video clips for fast similarity search and high recall. MPLSH is able to filter out a large number of dissimilar clips from video database. To refine the search process, we apply a similarity voting based on video clip signatures. Experimental results on the dataset of 12,790 web videos show that the proposed approach improves average precision over the baseline colour histogram approach while satisfying real-time requirements.

[1]  Sang Uk Lee,et al.  Efficient video indexing scheme for content-based retrieval , 1999, IEEE Trans. Circuits Syst. Video Technol..

[2]  Mei-Chen Yeh,et al.  Video copy detection by fast sequence matching , 2009, CIVR '09.

[3]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[4]  Hai Tao,et al.  A novel feature descriptor invariant to complex brightness changes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[6]  Shree K. Nayar,et al.  Ordinal Measures for Image Correspondence , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Li Chen,et al.  Video copy detection: a comparative study , 2007, CIVR '07.

[8]  Laurent Amsaleg,et al.  Videntifier™ forensic: robust and efficient detection of illegal multimedia , 2009, MM '09.

[9]  Zhe Wang,et al.  Modeling LSH for performance tuning , 2008, CIKM '08.

[10]  Laurent Amsaleg,et al.  Full GPU acceleration of local descriptors using CUDA , 2009 .

[11]  Yan Ke,et al.  An efficient parts-based near-duplicate and sub-image retrieval system , 2004, MULTIMEDIA '04.

[12]  Tao Mei,et al.  Scalable clip-based near-duplicate video detection with ordinal measure , 2010, CIVR '10.

[13]  Cordelia Schmid,et al.  INRIA-LEAR'S Video Copy Detection System , 2008, TRECVID.

[14]  Zhe Wang,et al.  Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search , 2007, VLDB.

[15]  Athman Bouguettaya,et al.  An Efficient Near-Duplicate Video Shot Detection Method Using Shot-Based Interest Points , 2009, IEEE Transactions on Multimedia.

[16]  Fred Stentiford,et al.  Video sequence matching based on temporal ordinal measurement , 2008, Pattern Recognit. Lett..

[17]  Chong-Wah Ngo,et al.  Practical elimination of near-duplicates from web video search , 2007, ACM Multimedia.

[18]  Mei-Chen Yeh,et al.  A compact, effective descriptor for video copy detection , 2009, MM '09.

[19]  Nuria Oliver,et al.  Understanding near-duplicate videos: a user-centric approach , 2009, ACM Multimedia.

[20]  Tat-Seng Chua,et al.  An integrated color-spatial approach to content-based image retrieval , 1995, MULTIMEDIA '95.

[21]  Zi Huang,et al.  UQLIPS: A Real-time Near-duplicate Video Clip Detection System , 2007, VLDB.

[22]  Virgílio A. F. Almeida,et al.  Understanding video interactions in youtube , 2008, ACM Multimedia.

[23]  Chong-Wah Ngo,et al.  Clip-based similarity measure for hierarchical video retrieval , 2004, MIR '04.

[24]  Song Tan,et al.  Large-scale near-duplicate web video search: Challenge and opportunity , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[25]  Olivier Buisson,et al.  Robust voting algorithm based on labels of behavior for video copy detection , 2006, MM '06.

[26]  Vasudev Bhaskaran,et al.  Spatiotemporal sequence matching for efficient video copy detection , 2005, IEEE Trans. Circuits Syst. Video Technol..

[27]  Anssi Klapuri,et al.  Query by humming of midi and audio using locality sensitive hashing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[28]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[29]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[30]  Olivier Buisson,et al.  Scalable mining of large video databases using copy detection , 2008, ACM Multimedia.

[31]  Xian-Sheng Hua,et al.  Robust video signature based on ordinal measure , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[32]  Ruud M. Bolle,et al.  Comparison of sequence matching techniques for video copy detection , 2001, IS&T/SPIE Electronic Imaging.

[33]  Olivier Buisson,et al.  Content-Based Copy Retrieval Using Distortion-Based Probabilistic Similarity Search , 2007, IEEE Transactions on Multimedia.

[34]  Meng Wang,et al.  MSRA-MM 2.0: A Large-Scale Web Multimedia Dataset , 2009, 2009 IEEE International Conference on Data Mining Workshops.