Review Article Silicon pools and fluxes in soils and landscapes—a review

Silicon (Si) is the second-most abundant element in the earth's crust. In the pedosphere, however, huge spans of Si contents occur mainly caused by Si redistribution in soil profiles and landscapes. Here, we summarize the current knowledge on the different pools and fluxes of Si in soils and terrestrial biogeosystems. Weathering and subsequent release of soluble Si may lead to (1) secondarily bound Si in newly formed Al silicates, (2) amorphous silica precipitation on surfaces of other minerals, (3) plant uptake, formation of phytogenic Si, and subsequent retranslocation to soils, (4) translocation within soil profiles and formation of new horizons, or (5) translocation out of soils (desilication). The research carried out hitherto focused on the participation of Si in weathering processes, especially in clay neoformation, buffering mechanisms for acids in soils or chemical denudation of landscapes. There are, however, only few investigations on the characteristics and controls of the low-crystalline, almost pure silica compounds formed during pedogenesis. Further, there is strong demand to improve the knowledge of (micro)biological and rhizosphere processes contributing to Si mobilization, plant uptake, and formation of phytogenic Si in plants, and release due to microbial decomposition. The contribution of the biogenic Si sources to Si redistribution within soil profiles and desilication remains unknown concerning the pools, rates, processes, and driving forces. Comprehensive studies considering soil hydrological, chemical, and biological processes as well as their interactions at the scale of pedons and landscapes are necessary to make up and model the Si balance and to couple terrestrial processes with Si cycle of limnic, fluvial, or marine biogeosystems.

[1]  M. Hodson,et al.  Silica in higher plants. , 2007, Ciba Foundation symposium.

[2]  D. Sauer,et al.  Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments , 2006 .

[3]  M. Sommer,et al.  Influence of soil pattern on matter transport in and from terrestrial biogeosystems- : A new concept for landscape pedology , 2006 .

[4]  C. Ortiz-Solorio,et al.  Micromorphology of opaline features in soils on the sediments of the ex-Lago de Texcoco, México , 2006 .

[5]  M. Yano,et al.  A silicon transporter in rice , 2006, Nature.

[6]  R. Jahn,et al.  Accumulation soils like “Ockererde”—forgotten soil units in soil‐classification systems , 2005 .

[7]  M. Brzezinski,et al.  Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands , 2005 .

[8]  J. Miller,et al.  The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams , 2005 .

[9]  N. Oh,et al.  Elemental translocation and loss from three highly weathered soil–bedrock profiles in the southeastern United States , 2005 .

[10]  R. Fulweiler,et al.  Terrestrial vegetation and the seasonal cycleof dissolved silica in a southern New Englandcoastal river , 2005 .

[11]  D. Stonestrom,et al.  Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical evolution and contemporary solute fluxes and rates , 2005 .

[12]  V. Farmer Forest vegetation does recycle substantial amounts of silicon from and back to the soil solution with phytoliths as an intermediate phase, contrary to recent reports , 2005 .

[13]  E. Hoffland,et al.  Contribution of mineral tunneling to total feldspar weathering , 2005 .

[14]  G. Stoops,et al.  Amorphous silica materials in soils and sediments of the Ex-Lago de Texcoco, Mexico: An explanation for its subsidence , 2005 .

[15]  O. Chadwick,et al.  Biological control of terrestrial silica cycling and export fluxes to watersheds , 2005, Nature.

[16]  J. Meunier,et al.  Another continental pool in the terrestrial silicon cycle , 2005, Nature.

[17]  J. Braun,et al.  Present weathering rates in a humid tropical watershed: Nsimi, South Cameroon , 2005 .

[18]  J. Verstraten,et al.  Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia , 2004 .

[19]  K. Kendrick,et al.  Pedogenic Silica Accumulation in Chronosequence Soils, Southern California , 2004 .

[20]  K. Stahr,et al.  A comparative micromorphological and chemical study of “Raseneisenstein” (bog iron ore) and “Ortstein” , 2004 .

[21]  D. Cremeens,et al.  Guidelines for analysis and description of soil and regolith thin sections , 2004 .

[22]  D. Jones,et al.  Mobilization of aluminium, iron and silicon by Picea abies and ectomycorrhizas in a forest soil , 2004 .

[23]  F. Gérard,et al.  Silicate weathering mechanisms determined using soil solutions held at high matric potential , 2003 .

[24]  P. Oliva,et al.  Chemical weathering in granitic environments , 2003 .

[25]  Toby Tyrrell,et al.  Role of diatoms in regulating the ocean's silicon cycle , 2003 .

[26]  R. Bustin,et al.  Opaline and Al-Si phytoliths from a tropical mire system of West Malaysia: abundance, habit, elemental composition, preservation and significance , 2003 .

[27]  L. Kump,et al.  Soil pore-water distributions and the temperature feedback of weathering in soils , 2003 .

[28]  R. E. Turner,et al.  Global patterns of dissolved N, P and Si in large rivers , 2003 .

[29]  J. Clarke The occurrence and significance of biogenic opal in the regolith , 2003 .

[30]  F. Inagaki,et al.  Microbial silica deposition in geothermal hot waters , 2003, Applied Microbiology and Biotechnology.

[31]  J. Meunier,et al.  Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation , 2003, Quaternary Research.

[32]  A. Watson,et al.  Modeling the response of the oceanic Si inventory to perturbation, and consequences for atmospheric CO2 , 2002 .

[33]  D. Conley Terrestrial ecosystems and the global biogeochemical silica cycle , 2002 .

[34]  E. Ranst,et al.  Evaluation of ferrolysis in soil formation , 2002 .

[35]  P. Nørnberg,et al.  Imogolite related to podzolization processes in Danish podzols , 2002 .

[36]  S. P. Anderson,et al.  Linkages Between Weathering and Erosion in a Small, Steep Catchment , 2002 .

[37]  M. Dietzel Interaction of polysilicic and monosilicic acid with mineral surfaces , 2002 .

[38]  F. Gérard,et al.  Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhône, France) , 2002 .

[39]  S. Uhlenbrook,et al.  Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales , 2002 .

[40]  F. Longstaffe,et al.  Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass , 2002 .

[41]  M. Gehlen,et al.  Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules , 2002 .

[42]  S. Page,et al.  The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition , 2001 .

[43]  K. Stahr,et al.  Lateral podzolization in a sandstone catchment , 2001 .

[44]  F. Watteau,et al.  Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest , 2001 .

[45]  P. Fitze,et al.  Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swiss alpine environments , 2001 .

[46]  O. Chadwick,et al.  Accretion of Asian dust to Hawaiian soils: isotopic, elemental, and mineral mass balances , 2001 .

[47]  Y. Lucas The Role of Plants in Controlling Rates and Products of Weathering: Importance of Biological Pumping , 2001 .

[48]  A. Golyeva Biomorphic analysis as a part of soil morphological investigations , 2001 .

[49]  Motoharu Kawano,et al.  Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation , 2001 .

[50]  W. Schlesinger,et al.  Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment , 2001 .

[51]  B. Jones,et al.  Microbial Construction of Siliceous Stalactites at Geysers and Hot Springs: Examples from the Whakarewarewa Geothermal Area, North Island, New Zealand , 2001 .

[52]  Xiangyang Zhou,et al.  Microenvironments of pH in biofilms grown on dissolving silicate surfaces , 2000 .

[53]  D. M. Nelson,et al.  A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy , 2000 .

[54]  P. Freyssinet,et al.  Geochemical mass balance and weathering rates of ultramafic schists in Amazonia , 2000 .

[55]  M. Dietzel Dissolution of silicates and the stability of polysilicic acid , 2000 .

[56]  G. Pope Soils and Geomorphology, 3rd edn , 2000 .

[57]  R. Berner,et al.  Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering , 2000 .

[58]  P. Tréguer,et al.  Global change: Silica control of carbon dioxide , 2000, Nature.

[59]  K. Stahr,et al.  Lateral podzolization in a granite landscape. , 2000 .

[60]  L. Kump,et al.  CHEMICAL WEATHERING ,A TMOSPHERIC CO 2 , AND CLIMATE , 2000 .

[61]  P. Fitze,et al.  Formulation of pedologic mass balance based on immobile elements: a revision. , 2000 .

[62]  M. Olsson,et al.  Mycorrhizal weathering: A true case of mineral plant nutrition? , 2000 .

[63]  S. P. Anderson,et al.  Chemical weathering in the foreland of a retreating glacier , 2000 .

[64]  M. Bouchard,et al.  Chemical weathering studies in relation to geomorphological research in southeastern Canada , 2000 .

[65]  L. Strand,et al.  Mobility of different size fractions of organic carbon, Al, Fe, Mn and Si in podzols , 2000 .

[66]  H. Ilvesniemi,et al.  Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer. , 2000 .

[67]  D. C. Bain,et al.  The Podzolization Process , 2000 .

[68]  D. C. Bain,et al.  The podzolization process. A review , 2000 .

[69]  U. Schwertmann,et al.  Changes to hardsetting properties of soil by addition of metal hydroxides , 1999 .

[70]  P. Oliva,et al.  The effect of organic matter on chemical weathering: study of a small tropical watershed: nsimi-zoétélé site, cameroon , 1999 .

[71]  K. Konhauser,et al.  Bacterial clay authigenesis: a common biogeochemical process , 1999 .

[72]  B. Jones,et al.  Role of fungi in the formation of siliceous coated grains, Waiotapu geothermal area, North Island, New Zealand , 1999 .

[73]  J. Meunier,et al.  Biogenic silica storage in soils , 1999 .

[74]  F. Runge The opal phytolith inventory of soils in central Africa —quantities, shapes, classification, and spectra , 1999 .

[75]  P. Blaser,et al.  Aluminum Solubility Control in Different Horizons of a Podzol , 1999 .

[76]  B. Dupré,et al.  Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers , 1999 .

[77]  R. Dahlgren,et al.  Field weathering rates of Mt. St. Helens tephra , 1999 .

[78]  A. Mariotti,et al.  Late Holocene Phytolith and Carbon-Isotope Record from a Latosol at Salitre, South-Central Brazil , 1999, Quaternary Research.

[79]  F. Azam,et al.  Accelerated dissolution of diatom silica by marine bacterial assemblages , 1999, Nature.

[80]  B. Jones,et al.  Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya Rift Valley , 1998 .

[81]  T. Desjardins,et al.  Transfer of dissolved Al, Fe and Si in two Amazonian forest environments in Brazil , 1998 .

[82]  J. Webb,et al.  Geochemical Mass-Balance and Oxygen-Isotope Constraints on Silcrete Formation and Its Paleoclimatic Implications in Southern Australia , 1998 .

[83]  D. Markewitz,et al.  The Bio in Aluminum and Silicon Geochemistry , 1998 .

[84]  D. Stonestrom,et al.  Determining rates of chemical weathering in soils : solute transport versus profile evolution , 1998 .

[85]  O. Chadwick,et al.  The Effect of Plants on Mineral Weathering , 1998 .

[86]  J. Bockheim,et al.  Mass balance of soil evolution on late Quaternary marine terraces in coastal Oregon , 1998 .

[87]  E. Wohl,et al.  Stable isotope composition of soil organic matter and phytoliths as paleoenvironmental indicators , 1998 .

[88]  C. Exley Silicon in life : A bioinorganic solution to bioorganic essentiality , 1998 .

[89]  W. Shotyk,et al.  Geochemistry, mineralogy, and geochemical mass balance on major elements in two peat bog profiles (Jura Mountains, Switzerland) , 1997 .

[90]  K. Auerswald,et al.  Untersuchungen zur modellierung der bodenneubildungsrate auf opalinuston des baseler tafeljura , 1997 .

[91]  S. P. Anderson,et al.  Chemical weathering in glacial environments , 1997 .

[92]  W. Shotyk,et al.  Chemical composition, pH, and redox state of sulfur and iron in complete vertical porewater profiles from two Sphagnum peat bogs, Jura Mountains, Switzerland , 1997 .

[93]  J. Meunier,et al.  Plant impact on the biogeochemical cycle of silicon and related weathering processes , 1997 .

[94]  H. Blume,et al.  Distribution pattem, genesis and classification of soils of an arid dune area in Northern Negev , 1996 .

[95]  H. Blume,et al.  Genesis and dynamics of an Oxic Dystrochrept and a Typic Haploperox from ultrabasic rock in the tropical rain forest climate of south-east Brazil , 1996 .

[96]  P. Dove Kinetic and thermodynamic controls on silica reactivity in weathering environments , 1995 .

[97]  R. Berner Chapter 13. CHEMICAL WEATHERING AND ITS EFFECT ON ATMOSPHERIC CO2 AND CLIMATE , 1995 .

[98]  A. White Chemical weathering rates of silicate minerals in soils , 1995 .

[99]  A. White,et al.  Effects of climate on chemical_ weathering in watersheds , 1995 .

[100]  D. C. Bain,et al.  Podzolisation mechanisms and the synthesis of imogolite in northern Scandinavia , 1995 .

[101]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[102]  R. Amundson,et al.  A mass balance analysis of podzolization: Examples from the northeastern United States , 1995 .

[103]  V. Farmer,et al.  An assessment of complex formation between aluminium and silicic acid in acidic solutions , 1994 .

[104]  S. Komor Geochemistry and hydrology of a calcareous fen within the Savage Fen wetlands complex, Minnesota, USA , 1994 .

[105]  O. Borggaard,et al.  MONOSILICATE ADSORPTION BY FERRIHYDRITE AND GOETHITE AT PH 3–6 , 1994 .

[106]  L. Kump,et al.  Lithologic and climatologic controls of river chemistry , 1994 .

[107]  F. Luizão,et al.  The Relation Between Biological Activity of the Rain Forest and Mineral Composition of Soils , 1993, Science.

[108]  D. Merritts,et al.  The mass balance of soil evolution on late Quaternary marine terraces, northern California , 1992 .

[109]  J. Drever,et al.  Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps , 1992 .

[110]  W. Dietrich,et al.  Deformational Mass Transport and Invasive Processes in Soil Evolution , 1992, Science.

[111]  H. Kodama,et al.  Tiron Dissolution Method Used to Remove and Characterize Inorganic Components in Soils , 1991 .

[112]  H. Nesbitt,et al.  Formation and evolution of soils from an acidified watershed: Plastic Lake, Ontario, Canada , 1991 .

[113]  A. Milnes,et al.  Silica accumulations in saprolites and soils in South Australia , 1991 .

[114]  P. Bennett,et al.  Fate of silicate minerals in a peat bog , 1991 .

[115]  R. Blank,et al.  Duripans of Idaho, U.S.A.: In situ alteration of eolian dust (loess) to an opal-A/X-ray amorphous phase , 1991 .

[116]  A. Stuanes,et al.  Long-term weathering of silicates in a sandy soil at Nordmoen, southern Norway , 1990, Clay Minerals.

[117]  P. Durand,et al.  Effects of vegetation type on the biogeochemistry of small catchments (Mont Lozere, France). , 1990 .

[118]  J. Kirby,et al.  Poorly ordered silica and aluminosilicates as temporary cementing agents in hard-setting soils. , 1990 .

[119]  R. Dahlgren,et al.  Formation and stability of imogolite in a tephritic Spodosol, Cascade Range, Washington, U.S.A. , 1989 .

[120]  A. Werritty,et al.  Hydrochemical budgets for the Loch Dee experimental catchments, Southwest Scotland (1981–1985) , 1989 .

[121]  J. Torrent,et al.  Fragipan Bonding by Silica and Iron Oxides in a Soil from Northwestern Italy , 1989 .

[122]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[123]  M. Thiry,et al.  Ground-water silicification and leaching in sands: Example of the Fontainebleau Sand (Oligocene) in the Paris Basin , 1988 .

[124]  R.L.H. Poels Soils, Water and Nutrients in a Forest Ecosystem in Suriname , 1987 .

[125]  R. C. Morris,et al.  Increased solubility of quartz following ferrous–ferric iron reactions , 1987, Nature.

[126]  R. Mahler,et al.  SORPTION OF SILICA IN A NORTHERN IDAHO PALOUSE SILT LOAM , 1987 .

[127]  W. D. Nettleton,et al.  Silica in Duric Soils: II. Mineralogy , 1987 .

[128]  W. D. Nettleton,et al.  Silica in Duric Soils: I. A Depositional Model1 , 1987 .

[129]  M. Thiry,et al.  Mineralogical forms of silica and their sequence of formation in silcretes , 1987 .

[130]  S. Colman,et al.  Rates of chemical weathering of rocks and minerals , 1987 .

[131]  C. Chartres A preliminary investigation of hardpan horizons in north-west New South Wales , 1985 .

[132]  F. Bartoli Crystallochemistry and surface properties of biogenic opal , 1985 .

[133]  J. C. Baker,et al.  SIMULATED MOVEMENT OF SILICON IN A TYPIC HAPLUDALF , 1985 .

[134]  A. D. Walker,et al.  Micromorphology and sub-microscopy of allophane and imogolite in a podzol Bs horizon: evidence for translocation and origin , 1985 .

[135]  V. Farmer Distribution of allophane and organic matter in podzol B horizons: reply to Buurman & Van Reeuwijk , 1984 .

[136]  L. P. Reeuwijk,et al.  Proto‐imogolite and the process of podzol formation: a critical note , 1984 .

[137]  L. Bruijnzeel,et al.  Hydrological and Biogeochemical Aspects of Man-Made Forests in South- Central Java, Indonesia. , 1984 .

[138]  A. R. Fraser,et al.  Proto‐imogolite allophane in podzol concretions in Australia: possible relationship to aluminous ferrallitic (lateritic) cementation , 1984 .

[139]  J. Raven THE TRANSPORT AND FUNCTION OF SILICON IN PLANTS , 1983 .

[140]  A. R. Fraser,et al.  Chemical and colloidal stability of sols in the Al2O3-Fe2O3-SiO2-H2O system: their role in podzolization , 1982 .

[141]  J. Muir,et al.  Eluvial/illuvial coefficients of major elements and the corresponding losses and gains in three soil profiles , 1982 .

[142]  J. Stednick HYDROCHEMICAL BALANCE OF AN ALPINE WATERSHED IN SOUTHEAST ALASKA , 1981 .

[143]  J. Mckeague,et al.  Imogolite in cemented horizons of some British Columbia soils , 1981 .

[144]  V. Farmer,et al.  IMOGOLITE AND PROTO‐IMOGOLITE ALLOPHANE IN SPODIC HORIZONS: EVIDENCE FOR A MOBILE ALUMINIUM SILICATE COMPLEX IN PODZOL FORMATION , 1980 .

[145]  L. Wilding,et al.  Dissolution of biogenic opal as a function of its physical and chemical properties. , 1980 .

[146]  R. Iler The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica , 1979 .

[147]  A. Juo,et al.  Characteristics of Silica Sorption and Solubility as Parameters to Evaluate the Surface Properties of Tropical Soils: II. The Index of Silica Saturation1 , 1977 .

[148]  L. Wilding,et al.  Contributions of Forest Opal and Associated Crystalline Phases to Fine Silt and Clay Fractions of Soils , 1974 .

[149]  A. Lauwers,et al.  Bio-degradation and utilization of silica and quartz , 1974, Archives of Microbiology.

[150]  L. Wilding,et al.  Biogenic Opal in Ohio Soils , 1971 .

[151]  H. Harder,et al.  Quarzsynthese bei tiefen temperaturen , 1970 .

[152]  R. Brinkman Ferrolysis, a hydromorphic soil forming process , 1970 .

[153]  L. Wilding Radiocarbon Dating of Biogenetic Opal , 1967, Science.

[154]  Robert L. Jones,et al.  Aspects of Catenary and Depth Distribution of Opal Phytoliths in Illinois Soils1 , 1964 .

[155]  Robert L. Jones,et al.  SOME MINERALOGICAL AND CHEMICAL PROPERTIES OF PLANT OPAL , 1963 .

[156]  L. Jones,et al.  Effects of Iron and Aluminium Oxides on Silica in Solution in Soils , 1963, Nature.

[157]  E. Crompton,et al.  Soil Formation , 1962 .

[158]  Leigh A Sullivan,et al.  Soil carbon sequestration in phytoliths , 2005 .

[159]  I. Kostović,et al.  Silicon Biomineralization , 2003, Progress in Molecular and Subcellular Biology.

[160]  J. Ma,et al.  Functions of silicon in higher plants. , 2003, Progress in molecular and subcellular biology.

[161]  D. Neumann Silicon in plants. , 2003, Progress in molecular and subcellular biology.

[162]  Victor Paz,et al.  Phytoliths: Applications in Earth Sciences and Human History , 2003 .

[163]  Ean,et al.  Iron ( III )-silica interactions in aqueous solution : Insights from X-ray absorption fine structure spectroscopy , 2002 .

[164]  E. Hoffland,et al.  Increasing Feldspar Tunneling by Fungi across a North Sweden Podzol Chronosequence , 2002, Ecosystems.

[165]  D. Schulze,et al.  Soil mineralogy with environmental applications. , 2002 .

[166]  V. Matichenkov,et al.  Chapter 13 The relationship between silicon and soil physical and chemical properties , 2001 .

[167]  J. Meunier,et al.  Phytoliths : applications in earth sciences and human history , 2001 .

[168]  P. Hinsinger,et al.  Plant-induced weathering of a basaltic rock: experimental evidence , 2001 .

[169]  A. Aleksandrovskii,et al.  The application of phitolith analysis for solving problems of soil genesis and evolution , 1999 .

[170]  Dennis D. Eberl,et al.  Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes , 1998 .

[171]  R. April,et al.  Chemical weathering and cation loss in a base-poor watershed , 1998 .

[172]  J. Deckers,et al.  World Reference Base for Soil Resources , 1998 .

[173]  M. Thiry Continental Silicifications: A Review , 1997 .

[174]  R. Graham,et al.  Silica-Cemented Terrace Edges, Central California Coast , 1997 .

[175]  A. A. Gol'yeva Experience in using phytolith analysis in soil science , 1996 .

[176]  R. Berner Chemical weathering and its effect on atmospheric CO 2 and climate , 1995 .

[177]  Matthias Hinderer Simulation langfristiger Trends der Boden- und Grundwasserversauerung im Bundsandstein-Schwarzwald auf der Grundlage langjähriger Stoffbilanzen , 1995 .

[178]  C. Su,et al.  Solubility of hydroxy-aluminum interlayers and imogolite in a spodosol , 1995 .

[179]  R. Noyes Soils and Sediments , 1995 .

[180]  L. Norton Micromorphology of silica cementation in soils , 1993 .

[181]  G. Brümmer,et al.  Bildung schlechtkristalliner bis amorpher Verwitterungsprodukte in stark bis extrem versauerten Waldböden , 1993 .

[182]  P. Cotillon Sedimentary basins, evolution, facies and sediment budget , 1993 .

[183]  R. Fitzpatrick,et al.  Genesis of podzols on coastal dunes in southern Queensland .II. Geochemistry and forms of elements as deduced from various soil extraction procedures , 1992 .

[184]  Y. Lucas,et al.  Soil Formation in Tropically Weathered Terrains , 1992 .

[185]  W. Flehmig,et al.  Stoffbilanzierung in einer Pseudogley-Parabraunerde aus Löß unter Anwendung der IR-Phasenanalyse , 1990 .

[186]  G. Mew,et al.  Deep Cementation in Late Quaternary Sands near Westport, New Zealand , 1989 .

[187]  K. Simkiss,et al.  Biomineralization : cell biology and mineral deposition , 1989 .

[188]  H. Ellenberg Ökosystemforschung : Ergebnisse des Sollingprojekts 1966-1986 , 1986 .

[189]  V. Farmer Sources and speciation of aluminium and silicon in natural waters. , 1986, Ciba Foundation symposium.

[190]  S. Mann,et al.  Structural aspects of biogenic silica. , 1986, Ciba Foundation symposium.

[191]  P. Jungerius Soils and Geomorphology , 1985 .

[192]  Y. Tardy The chemistry of silica solubility, polymerization, colloid and surface properties, and biochemistry, Ralf K. Iler, 1979 , 1982 .

[193]  H. Blume,et al.  Genesis of a So-called Ferrolysed Soil of Bangladesh , 1982 .

[194]  W. D. Nettleton,et al.  Genesis of a typic durixeralf of Southern California. , 1980 .

[195]  R. Brinkman Ferrolysis, a soil-forming process in hydromorphic conditions , 1979 .

[196]  C. T. Hallmark,et al.  Dissolution and Stability of Biogenic Opal1 , 1979 .

[197]  B. Souchier,et al.  Cycle et rôle du silicium d'origine végétale dans les écosystèmes forestiers tempérés , 1978 .

[198]  L. Roger,et al.  Allophane and imogolite , 1978 .

[199]  L. Wilding,et al.  Accessibility And Properties Of Occluded Carbon In Biogenetic Opal , 1967 .

[200]  L. Jones,et al.  Silica in soils, plants, and animals. , 1967 .

[201]  M. Raupach,et al.  The reaction between monosilicic acid and aluminium hydroxide. I. Kinetics of adsorption of silicic acid by aluminium hydroxide , 1967 .

[202]  R. Beckwith,et al.  Studies on soluble silica in soils. II. The release of monosilicic acid from soils , 1964 .

[203]  M. G. Cline,et al.  Silica in Soils1 , 1963 .

[204]  R. Beckwith,et al.  Studies on soluble silica in soils. I. The sorption of silicic acid by soils and minerals , 1963 .

[205]  H. Blume,et al.  Art und Ausmaß der Veränderungen des Bestandes mobiler Oxyde in Böden aus jungpleistozänem Geschiebemergel und ihren Horizonten , 1962 .