Towards a periodic table for the nanomechanical properties of the elements

Starting from a material description involving only two parameters, the cohesion energy and the atomic size, all the fundamental nanomechanical properties for a given chemical element are estimated. In particular, Young’s modulus, Poisson’s ratio, critical normal and shear stresses and strains, fracture and fragmentation energies, fracture toughness and coefficient of thermal expansion are deduced. Even if the approach partially recalls the classical solid state physics treatment and gives estimations rather than exact predictions, new interesting aspects clearly emerge from the analysis. According to the proposed simple but general model, a preliminary periodic table for the nanomechanical properties of the elements is presented for the first time. The periodicity of the mechanical properties, similarly to the well-known periodicity of the electronic properties, is clearly emphasized. A comparison between our approach and some data present in the literature concludes this paper. � 2006 Elsevier Ltd. All rights reserved.

[1]  N. H. Macmillan The Ideal Strength of Solids , 1983 .

[2]  Boris I. Yakobson,et al.  FULLERENE NANOTUBES : C1,000,000 AND BEYOND , 1997 .

[3]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[4]  Alberto Carpinteri,et al.  Tubular adhesive joints under axial load , 2003 .

[5]  Bin Liu,et al.  Thermal Expansion of Single Wall Carbon Nanotubes , 2004 .

[6]  Miyamoto,et al.  Synthesis of BxCyNz nanotubules. , 1995, Physical review. B, Condensed matter.

[7]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[8]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[9]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[10]  J. C. Slater Note on Grüneisen's Constant for the Incompressible Metals , 1940 .

[11]  C. Kittel Introduction to solid state physics , 1954 .

[12]  P. Lambin,et al.  Elastic deformation of a carbon nanotube adsorbed on a stepped surface , 1998 .

[13]  E. Orowan,et al.  Fracture and strength of solids , 1949 .

[14]  Alberto Carpinteri,et al.  Structural Mechanics: A unified approach , 1997 .

[15]  Alberto Carpinteri,et al.  One-, two- and three-dimensional universal laws for fragmentation due to impact and explosion , 2002 .

[16]  J. Frenkel Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper , 1926 .

[17]  P. Milani,et al.  Acoustic phonon propagation and elastic properties of cluster-assembled carbon films investigated by Brillouin light scattering , 2001 .

[18]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[19]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[20]  A. Carpinteri,et al.  Scale-effects on mean and standard deviation of the mechanical properties of condensed matter: an energy-based unified approach , 2004 .

[21]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[22]  F. Willaime,et al.  Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. , 1996, Physical review letters.

[23]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[24]  Nicola Pugno,et al.  Quantized fracture mechanics , 2004 .

[25]  R. Latanision,et al.  Atomistics of fracture , 1970 .