A Latin square autotopism secret sharing scheme

We present a novel secret sharing scheme where the secret is an autotopism (a symmetry) of a Latin square. Previously proposed secret sharing schemes involving Latin squares have many drawbacks: (a) Latin squares contain $$n^2$$n2 entries, which may be too large, (b) partial information about the secret may be directly revealed, (c) a subsequently discovered subtle “flaw”, (d) difficulty in initialization and reconstruction, (e) difficulty in verification, and (f) difficulty in generalizing to a multi-level scheme. We carefully analyze the security of the proposed scheme, and identify how it overcomes all of these problems.

[1]  Nicholas J. Cavenagh A superlinear lower bound for the size of a critical set in a latin square , 2007 .

[2]  Xiaowen Zhang,et al.  The Latin squares and the secret sharing schemes , 2010, Groups Complex. Cryptol..

[3]  Charles J. Colbourn,et al.  The complexity of completing partial Latin squares , 1984, Discret. Appl. Math..

[4]  B. McKay,et al.  Small latin squares, quasigroups, and loops , 2007 .

[5]  Ian M. Wanless,et al.  On the Number of Latin Squares , 2005, 0909.2101.

[6]  Douglas S. Stones The Many Formulae for the Number of Latin Rectangles , 2010, Electron. J. Comb..

[7]  Mike J. Grannell,et al.  A Flaw in the Use of Minimal Defining Sets for Secret Sharing Schemes , 2006, Des. Codes Cryptogr..

[8]  Xiaowen Zhang,et al.  Improved Latin Square based Secret Sharing Scheme , 2009, ArXiv.

[9]  Ian M. Wanless,et al.  Bounds on the number of autotopisms and subsquares of a Latin square , 2013, Comb..

[10]  Jennifer Seberry,et al.  Further results on strongbox secured secret sharing schemes , 2004 .

[11]  L. F. Fitina,et al.  Access schemes based on perfect critical set partitions and transformations , 2006, Australas. J Comb..

[12]  Douglas R. Stinson,et al.  An explication of secret sharing schemes , 1992, Des. Codes Cryptogr..

[13]  Jennifer Seberry,et al.  Strongbox secured secret sharing schemes , 2000 .

[14]  Jennifer Seberry,et al.  Secret Sharing Schemes Based on Room Squares , 1996, DMTCS.

[15]  James G. Lefevre,et al.  Identifying flaws in the security of critical sets in latin squares via triangulations , 2012, Australas. J Comb..

[16]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[17]  Raúl M. Falcón,et al.  Decomposition of principal autotopisms into triples of a Latin square , 2006 .

[18]  Ian M. Wanless,et al.  Cycle structure of autotopisms of quasigroups and latin squares , 2012, 1509.05655.

[19]  H. Weyl Permutation Groups , 2022 .

[20]  Falcón Ganfornina,et al.  Latin squares associated to principal autotopisms of long cycles. Application in Cryptography , 2006 .

[21]  Peter J. Cameron,et al.  Permutation Groups: Frontmatter , 1999 .

[22]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[23]  Douglas S. Stones The parity of the number of quasigroups , 2010, Discret. Math..

[24]  Douglas S. Stones ON THE NUMBER OF LATIN RECTANGLES , 2010, Bulletin of the Australian Mathematical Society.

[25]  J. Seberry,et al.  Secret sharing schemes arising from latin squares , 1994 .

[26]  Jennifer Seberry,et al.  Perfect Secret Sharing Schemes from Room Squares , 1998 .

[27]  Martin Tompa,et al.  How to share a secret with cheaters , 1988, Journal of Cryptology.