Green biopolymer and plasticizer for solid electrolyte preparation: FTIR, electrochemical properties and EDLC characteristics

[1]  M. Brza,et al.  Simulated EIS and Trukhan Model to Study the Ion Transport Parameters Associated with Li+ Ion Dynamics in CS Based Polymer Blends Inserted with Lithium Nitrate Salt , 2023, Results in Physics.

[2]  Muaffaq M. Nofal,et al.  Characteristics of Methyl Cellulose Based Solid Polymer Electrolyte Inserted with Potassium Thiocyanate as K+ Cation Provider: Structural and Electrical Studies , 2022, Materials.

[3]  K. H. Ibnaouf,et al.  Substantial Proton Ion Conduction in Methylcellulose/Pectin/Ammonium Chloride Based Solid Nanocomposite Polymer Electrolytes: Effect of ZnO Nanofiller , 2022, Membranes.

[4]  A. Abou Elfadl,et al.  Structural, Optical, Mechanical and Antibacterial Properties of MgO/Poly(Vinyl Acetate)/Poly(Vinyl Chloride) Nanocomposites , 2022, Brazilian Journal of Physics.

[5]  S. B. Aziz,et al.  Development of Flexible Plasticized Ion Conducting Polymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA): Chitosan (CS) with High Ion Transport Parameters Close to Gel Based Electrolytes , 2022, Gels.

[6]  M. Brza,et al.  Glycerol as an Efficient Plasticizer to Increase the DC Conductivity and Improve the Ion Transport Parameters in Biopolymer Based Electrolytes: XRD, FTIR and EIS Studies , 2022, Arabian Journal of Chemistry.

[7]  Muaffaq M. Nofal,et al.  An Investigation into the PVA:MC:NH4Cl-Based Proton-Conducting Polymer-Blend Electrolytes for Electrochemical Double Layer Capacitor (EDLC) Device Application: The FTIR, Circuit Design and Electrochemical Studies , 2022, Molecules.

[8]  M. Kadir,et al.  Design of plasticized proton conducting Chitosan:Dextran based biopolymer blend electrolytes for EDLC application: Structural, impedance and electrochemical studies , 2021, Arabian Journal of Chemistry.

[9]  H. Anuar,et al.  Structural and electrochemical studies of proton conducting biopolymer blend electrolytes based on MC:Dextran for EDLC device application with high energy density , 2021, Alexandria Engineering Journal.

[10]  Muaffaq M. Nofal,et al.  A Study of Methylcellulose Based Polymer Electrolyte Impregnated with Potassium Ion Conducting Carrier: Impedance, EEC Modeling, FTIR, Dielectric, and Device Characteristics , 2021, Materials.

[11]  T. Ahamad,et al.  Design of potassium ion conducting PVA based polymer electrolyte with improved ion transport properties for EDLC device application , 2021, Journal of Materials Research and Technology.

[12]  T. Ahamad,et al.  Structural, Electrical and Electrochemical Properties of Glycerolized Biopolymers Based on Chitosan (CS): Methylcellulose (MC) for Energy Storage Application , 2021, Polymers.

[13]  Xiang Han,et al.  Realizing an All‐Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite‐Free Aqueous Zn–MnO2 Batteries , 2021, Advanced materials.

[14]  S. B. Aziz,et al.  Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics , 2020, Membranes.

[15]  M. Brza,et al.  Investigation of Ion Transport Parameters and Electrochemical Performance of Plasticized Biocompatible Chitosan-Based Proton Conducting Polymer Composite Electrolytes , 2020, Membranes.

[16]  Muaffaq M. Nofal,et al.  The Study of Structural, Impedance and Energy Storage Behavior of Plasticized PVA:MC Based Proton Conducting Polymer Blend Electrolytes , 2020, Materials.

[17]  Muaffaq M. Nofal,et al.  Synthesis of Porous Proton Ion Conducting Solid Polymer Blend Electrolytes Based on PVA: CS Polymers: Structural, Morphological and Electrochemical Properties , 2020, Materials.

[18]  Yongbing Tang,et al.  Recent progress and perspective on electrolytes for sodium/potassium-based devices , 2020, Energy Storage Materials.

[19]  M. F. Shukur,et al.  Effect of ammonium thiocyanate on ionic conductivity and thermal properties of polyvinyl alcohol–methylcellulose–based polymer electrolytes , 2020, Ionics.

[20]  Muaffaq M. Nofal,et al.  Characteristics of EDLC device fabricated from plasticized chitosan:MgCl2 based polymer electrolyte , 2020 .

[21]  Elham M. A. Dannoun,et al.  The Study of Plasticized Amorphous Biopolymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA): Chitosan with High Ion Conductivity for Energy Storage Electrical Double-Layer Capacitors (EDLC) Device Application , 2020, Polymers.

[22]  N. A. Manan,et al.  Structural, impedance and electrochemical double-layer capacitor characteristics of improved number density of charge carrier electrolytes employing potato starch blend polymers , 2020, Ionics.

[23]  S. B. Aziz,et al.  Role of nano-capacitor on dielectric constant enhancement in PEO:NH4SCN:xCeO2 polymer nano-composites: Electrical and electrochemical properties , 2020 .

[24]  Muaffaq M. Nofal,et al.  Electrical, Dielectric Property and Electrochemical Performances of Plasticized Silver Ion-Conducting Chitosan-Based Polymer Nanocomposites , 2020, Membranes.

[25]  M. Kadir,et al.  Effect of glycerol on EDLC characteristics of chitosan:methylcellulose polymer blend electrolytes , 2020 .

[26]  M. Kadir,et al.  Electrochemical characteristics of solid state double-layer capacitor constructed from proton conducting chitosan-based polymer blend electrolytes , 2020, Polymer Bulletin.

[27]  R. Mohamed,et al.  Characterization of Solid Polymer Electrolyte Membrane made of Methylcellulose and Ammonium Nitrate , 2020, Journal of Physics: Conference Series.

[28]  W. Bessler,et al.  Electrochemical pressure impedance spectroscopy for investigation of mass transfer in polymer electrolyte membrane fuel cells , 2020 .

[29]  Varee Tyagi,et al.  Role of plasticizers in bioplastics , 2019, MOJ Food Processing & Technology.

[30]  M. Kadir,et al.  Fabrication of energy storage EDLC device based on CS:PEO polymer blend electrolytes with high Li+ ion transference number , 2019 .

[31]  Bahruddin,et al.  Bioplastic Properties of Sago-PVA Starch with Glycerol and Sorbitol Plasticizers , 2019, Journal of Physics: Conference Series.

[32]  M. Brza,et al.  Structural, Impedance, and EDLC Characteristics of Proton Conducting Chitosan-Based Polymer Blend Electrolytes with High Electrochemical Stability , 2019, Molecules.

[33]  Nidhi,et al.  Synthesis and characterization of magnesium ion conductivity in PVDF based nanocomposite polymer electrolytes disperse with MgO , 2019, Journal of Alloys and Compounds.

[34]  Noor Amili Abdul Ghani,et al.  Impact of purification on iota carrageenan as solid polymer electrolyte , 2019, Arabian Journal of Chemistry.

[35]  M. Muthukrishnan,et al.  Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications , 2019, Ionics.

[36]  T. Tseng,et al.  Hexanoyl chitosan/ENR25 blend polymer electrolyte system for electrical double layer capacitor , 2019, Polymers for Advanced Technologies.

[37]  G. Hirankumar,et al.  Effect of incorporation of different plasticizers on structural and ion transport properties of PVA-LiClO4 based electrolytes , 2018, Heliyon.

[38]  Meng-Yang Gao,et al.  A new type of composite electrolyte with high performance for room-temperature solid-state lithium battery , 2018, Journal of Materials Science.

[39]  Zejia Zhao,et al.  High Performance Poly(vinyl alcohol)-Based Li-Ion Conducting Gel Polymer Electrolyte Films for Electric Double-Layer Capacitors , 2018, Polymers.

[40]  M. Hussain,et al.  Preparation of Miscible PVA/PEG Blends and Effect of Graphene Concentration on Thermal, Crystallization, Morphological, and Mechanical Properties of PVA/PEG (10 wt%) Blend , 2018, International Journal of Polymer Science.

[41]  M. Galiński,et al.  Acetate- and lactate-based ionic liquids: Synthesis, characterisation and electrochemical properties , 2018, Journal of Molecular Liquids.

[42]  N. S. Mohamed,et al.  Influence of nano-sized fumed silica on physicochemical and electrochemical properties of cellulose derivatives-ionic liquid biopolymer electrolytes , 2018, Ionics.

[43]  M. C. Rao,et al.  Spectroscopic and Electrochemical Properties of [PVA/PVP] : [MgCl26H2O] Blend Polymer Electrolyte Films , 2018 .

[44]  Drazen Fabris,et al.  Performance of Commercially Available Supercapacitors , 2017 .

[45]  N. Abidi,et al.  Preparation and characterization of transparent cellulose films using an improved cellulose dissolution process , 2017 .

[46]  M. F. Shukur,et al.  NH4NO3 as charge carrier contributor in glycerolized potato starch-methyl cellulose blend-based polymer electrolyte and the application in electrochemical double-layer capacitor , 2017, Ionics.

[47]  M. A. Rasheed,et al.  Structural and electrical characteristics of PVA:NaTf based solid polymer electrolytes: role of lattice energy of salts on electrical DC conductivity , 2017, Journal of Materials Science: Materials in Electronics.

[48]  S. B. Aziz Occurrence of electrical percolation threshold and observation of phase transition in chitosan(1−x):AgIx (0.05 ≤ x ≤ 0.2)-based ion-conducting solid polymer composites , 2016 .

[49]  M. Isa,et al.  Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol , 2016, Scientific Reports.

[50]  M. F. Shukur,et al.  Ionic conductivity and dielectric properties of potato starch-magnesium acetate biopolymer electrolytes: the effect of glycerol and 1-butyl-3-methylimidazolium chloride , 2016, Ionics.

[51]  S. B. Aziz Study of electrical percolation phenomenon from the dielectric and electric modulus analysis , 2015, Bulletin of Materials Science.

[52]  Z. Abidin,et al.  Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: Electrical and dielectric analysis , 2015 .

[53]  A. Balducci,et al.  Mixtures of azepanium based ionic liquids and propylene carbonate as high voltage electrolytes for supercapacitors , 2015 .

[54]  S. Ramesh,et al.  Characterization of ionic liquid added poly(vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors , 2015 .

[55]  M. F. Shukur,et al.  Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor , 2014 .

[56]  S. Ramesh,et al.  Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties , 2014 .

[57]  S. Ramesh,et al.  Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)–lithium perchlorate based polymer electrolyte incorporated with TiO2 , 2014 .

[58]  S. B. Aziz Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte , 2013, Iranian Polymer Journal.

[59]  Klaus Müllen,et al.  Graphene-based in-plane micro-supercapacitors with high power and energy densities , 2013, Nature Communications.

[60]  Zurina Zainal Abidin,et al.  Electrical Conduction Mechanism in Solid Polymer Electrolytes: New Concepts to Arrhenius Equation , 2013 .

[61]  Ranveer Kumar,et al.  Preparation and characterization of pva based solid polymer electrolytes for electrochemical cell applications , 2013, Chinese Journal of Polymer Science.

[62]  M. Isa,et al.  The Oleic Acid Composition Effect on the Carboxymethyl Cellulose Based Biopolymer Electrolyte , 2013 .

[63]  Ranveer Kumar,et al.  Ionic Conductivity and Discharge Characteristic Studies of PVA-Mg(CH3COO)2 Solid Polymer Electrolytes , 2013 .

[64]  M. Johan,et al.  Conductivity, thermal and morphology studies of PEO based salted polymer electrolytes , 2012 .

[65]  A. Arof,et al.  Electrical double layer capacitor using poly(methyl methacrylate)–C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit , 2012 .

[66]  V. Narasimha Rao,et al.  Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications , 2012, Iranian Polymer Journal.

[67]  A. Arof,et al.  Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose , 2012, Polymer Bulletin.

[68]  S. Zein,et al.  MULTIWALLED CARBON NANOTUBES BASED NANOCOMPOSITES FOR SUPERCAPACITORS: A REVIEW OF ELECTRODE MATERIALS , 2012 .

[69]  A. Arof,et al.  Preparation and characterization of magnesium ion gel polymer electrolytes for application in electrical double layer capacitors , 2011 .

[70]  Xiong Zhang,et al.  Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for , 2011 .

[71]  Y. Kumar,et al.  Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: A comparative study with lithium and magnesium systems , 2011 .

[72]  A. Arof,et al.  Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan- silver triflate electrolyte membrane , 2010 .

[73]  M. Isa,et al.  Solid Polymer Electrolytes Based on Methylcellulose: FT-IR and Ionic Conductivity Studies , 2010 .

[74]  Chunsheng Wang,et al.  Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number , 2010 .

[75]  A. Arof,et al.  Transport studies of NH4NO3 doped methyl cellulose electrolyte , 2010 .

[76]  Klaas Nicolay,et al.  Chitosan-based systems for molecular imaging. , 2010, Advanced Drug Delivery Reviews.

[77]  Alimuddin,et al.  Study of dielectric and ac impedance properties of Ti doped Mn ferrites , 2009 .

[78]  S. L. Agrawal,et al.  Dielectric relaxation studies on [PEO–SiO2]:NH4SCN nanocomposite polymer electrolyte films , 2009 .

[79]  D. Bhat,et al.  Polyvinyl alcohol–polystyrene sulphonic acid blend electrolyte for supercapacitor application , 2009 .

[80]  P. R. Bueno,et al.  Dielectric relaxation and dc conductivity on the PVOH-CF3COONH4 polymer system , 2009 .

[81]  M. Ram,et al.  Dielectric and modulus studies on LiFe1/2Co1/2VO4 , 2008 .

[82]  D. Pradhan,et al.  Studies of Dielectric Relaxation and AC Conductivity Behavior of Plasticized Polymer Nanocomposite Electrolytes , 2008, International Journal of Electrochemical Science.

[83]  E. Şentürk,et al.  β Dielectric relaxation mode in side-chain liquid crystalline polymer film , 2008 .

[84]  A. Arof,et al.  ELECTRICAL DOUBLE LAYER CAPACITOR WITH PROTON CONDUCTING κ-CARRAGEENAN–CHITOSAN ELECTROLYTES , 2008 .

[85]  S. Ramesh,et al.  Conductivity and FTIR studies on PEO-LiX [X: CF3SO3(-), SO4(2-)] polymer electrolytes. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[86]  Y. Gong,et al.  Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration , 2007 .

[87]  G. Perrier,et al.  Crystallinity and dielectric relaxations in semi-crystalline poly(ether ether ketone) , 2007 .

[88]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[89]  Jesse O. Enlow,et al.  The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films , 2007 .

[90]  L. Léger,et al.  Effect of plasticizers (water and glycerol) on the diffusion of a small molecule in iota-carrageenan biopolymer films for edible coating application. , 2006, Biomacromolecules.

[91]  A. Arof,et al.  Conductivity studies of a chitosan-based polymer electrolyte , 2006 .

[92]  L. Mai,et al.  Dielectric spectroscopy studies on (PVP+PVA) polyblend film , 2006 .

[93]  D. Kanchan,et al.  Modulus studies of CdI2-Ag2O-V2O5-B2O3 system , 2005 .

[94]  C. Yoder,et al.  Geochemical applications of the simple salt approximation to the lattice energies of complex materials , 2005 .

[95]  M. Ishikawa,et al.  Application of proton conducting polymeric electrolytes to electrochemical capacitors , 2004 .

[96]  Wendy G. Pell,et al.  Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes , 2004 .

[97]  Athapol Noomhorm,et al.  Effect of Plasticizers on Mechanical and Barrier Properties of Rice Starch Film , 2004 .

[98]  Sa. K. Narayandass,et al.  Structural characterization of DC magnetron-sputtered TiO2 thin films using XRD and Raman scattering studies , 2003 .

[99]  A. Lewandowski Electrochemical capacitors with polymer electrolytes based on ionic liquids , 2003 .

[100]  Sagar Mitra,et al.  Electrochemical capacitors with plasticized gel-polymer electrolytes , 2001 .

[101]  M. M. Elkholy,et al.  The dielectric properties of TeO2–P2O5 glasses , 2000 .

[102]  R. Latham,et al.  Polymer electrolyte based solid state redox supercapacitors with poly (3-methyl thiophene) and polypyrrole conducting polymer electrodes , 1997 .

[103]  F. M. Gray,et al.  A Study of the dielectric properties of the polymer electrolyte PEO‐LiClO4 over a composition range using time domain spectroscopy , 1989 .

[104]  R. B. Rakhi,et al.  Recent trends in electrolytes for supercapacitors , 2022, Journal of Energy Storage.

[105]  M. Brza,et al.  Structural and energy storage behavior of ion conducting biopolymer blend electrolytes based on methylcellulose: Dextran polymers , 2022, Alexandria Engineering Journal.

[106]  S. Lau,et al.  Effect of glycerol as plasticizer on the tensile properties of chitosan/microcrystalline cellulose films , 2021 .

[107]  A. S. Samsudin,et al.  Studies on ionics conduction properties of modification CMC-PVA based polymer blend electrolytes via impedance approach , 2020 .

[108]  Jihad M Hadi Electrochemical Impedance study of Proton Conducting Polymer Electrolytes based on PVC Doped with Thiocyanate and Plasticized with Glycerol , 2020 .

[109]  A. Balducci,et al.  Natural Cellulose: A Green Alternative Binder for High Voltage Electrochemical Double Layer Capacitors Containing Ionic Liquid-Based Electrolytes , 2014 .

[110]  T. Mekonnen,et al.  Progress in bio-based plastics and plasticizing modi fi cations , 13379 – 13398 | , 2013 .

[111]  Srinivasan Sampath,et al.  Hydrogel-polymer electrolytes for electrochemical capacitors: an overview , 2009 .

[112]  R. J. Sengwa,et al.  Low frequency dielectric relaxation processes and ionic conductivity of montmorillonite clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone)-ethylene glycol blends , 2008 .