Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs

We consider discrete bilevel optimization problems where the follower solves an integer program with a fixed number of variables. Using recent results in parametric integer programming, we present polynomial time algorithms for pure and mixed integer bilevel problems. For the mixed integer case where the leader’s variables are continuous, our algorithm also detects whether the infimum cost fails to be attained, a difficulty that has been identified but not directly addressed in the literature. In this case, it yields a “better than fully polynomial time” approximation scheme with running time polynomial in the logarithm of the absolute precision. For the pure integer case where the leader’s variables are integer, and hence optimal solutions are guaranteed to exist, we present an algorithm which runs in polynomial time when the total number of variables is fixed.

[1]  P. Marcotte,et al.  A bilevel model of taxation and its application to optimal highway pricing , 1996 .

[2]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[3]  Panos M. Pardalos,et al.  Multilevel (Hierarchical) Optimization: Complexity Issues, Optimality Conditions, Algorithms , 2009 .

[4]  Friedrich Eisenbrand,et al.  Parametric Integer Programming in Fixed Dimension , 2008, Math. Oper. Res..

[5]  Stephan Dempe,et al.  Bilevel Programming With Knapsack Constraints , 2000 .

[6]  Panos M. Pardalos,et al.  Global optimization of concave functions subject to quadratic constraints: An application in nonlinear bilevel programming , 1992, Ann. Oper. Res..

[7]  Panos M. Pardalos,et al.  A new bilevel formulation for the vehicle routing problem and a solution method using a genetic algorithm , 2007, J. Glob. Optim..

[8]  Stephan Dempe,et al.  Discrete Bilevel Optimization Problems , 2001 .

[9]  P. Marcotte,et al.  A bilevel modelling approach to pricing and fare optimisation in the airline industry , 2003 .

[10]  Ravi Kannan,et al.  Lattice translates of a polytope and the Frobenius problem , 1992, Comb..

[11]  Panos M. Pardalos,et al.  Editorial: Hierarchical and bilevel programming , 1996, J. Glob. Optim..

[12]  Ted K. Ralphs,et al.  A Branch-and-cut Algorithm for Integer Bilevel Linear Programs , 2009 .

[13]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[14]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[15]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..

[16]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[17]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[18]  Kathrin Fischer,et al.  Sequential Discrete p-Facility Models for Competitive Location Planning , 2002, Ann. Oper. Res..

[19]  Harish G.A Babu,et al.  Operations Research and its Application , 2007 .

[20]  Kurt Mehlhorn,et al.  Optimal search for rationals , 2003, Inf. Process. Lett..

[21]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[22]  Xiaotie Deng,et al.  Complexity Issues in Bilevel Linear Programming , 1998 .

[23]  S. Janson,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[24]  L. N. Vicente,et al.  Discrete linear bilevel programming problem , 1996 .

[25]  Matthias Köppe,et al.  An Implementation of the Barvinok--Woods Integer Projection Algorithm , 2008, ITSL.

[26]  Christodoulos A. Floudas,et al.  Global optimization of mixed-integer bilevel programming problems , 2005, Comput. Manag. Sci..

[27]  Jo-Ansie Karina,et al.  UNIVERSIDAD DE CHILE , 2007 .

[28]  Panos M. Pardalos,et al.  Nonlinear bilevel problems with convex second level problem : Heuristics and descent methods , 1995 .

[29]  Maurice Queyranne,et al.  Rational Generating Functions and Integer Programming Games , 2008, Oper. Res..