Mantle-derived high-K magmatic fluxes in northeast Iran arc: constraints from zircon U-Pb-O-Hf and bulk rock major-trace elements and Sr-Nd-Pb isotopes

[1]  P. Alasino,et al.  The role of crustal thickness on magma composition in arcs: an example from the pre-Andean, South American Cordillera , 2022, Gondwana Research.

[2]  J. Chapman,et al.  The causes of continental arc flare ups and drivers of episodic magmatic activity in Cordilleran orogenic systems , 2021 .

[3]  E. al.,et al.  Supplemental Material: The Middle-Late Cretaceous Zagros ophiolites, Iran: Linking of a 3000 km swath of subduction initiation fore-arc lithosphere from Troodos, Cyprus to Oman , 2021, GSA Bulletin.

[4]  OUP accepted manuscript , 2021, Journal Of Petrology.

[5]  M. Ducea,et al.  Arclogites and their role in continental evolution; part 2: Relationship to batholiths and volcanoes, density and foundering, remelting and long-term storage in the mantle , 2020 .

[6]  M. Ducea,et al.  Geochemical evidences for quantifying crustal thickness over time in the Urumieh-Dokhtar magmatic arc (Iran) , 2020 .

[7]  J. Santos,et al.  Neotethyan Subduction Ignited the Iran Arc and Backarc Differently , 2020, Journal of Geophysical Research: Solid Earth.

[8]  J. Cottle,et al.  Erupted zircon record of continental crust formation during mantle driven arc flare-ups , 2020 .

[9]  A. Sluijs,et al.  Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up , 2020, Climate of the Past.

[10]  W. Griffin,et al.  Repeated magmatic buildup and deep “hot zones” in continental evolution: The Cadomian crust of Iran , 2020 .

[11]  W. Griffin,et al.  Subduction initiation and back-arc opening north of Neo-Tethys: Evidence from the Late Cretaceous Torbat-e-Heydarieh ophiolite of NE Iran , 2020, GSA Bulletin.

[12]  U. Klötzli,et al.  Petrological investigation of Late Cretaceous magmatism in Kaboodan area, NE Iran: Evidence for an active continental arc at Sabzevar zone , 2019 .

[13]  Chun-Chieh Hsu,et al.  A 6000-km-long Neo-Tethyan arc system with coherent magmatic flare-ups and lulls in South Asia , 2019, Geology.

[14]  W. K. Lieu,et al.  The robustness of Sr/Y and La/Yb as proxies for crust thickness in modern arcs , 2019, Geosphere.

[15]  H. Azizi,et al.  Jurassic igneous rocks of the central Sanandaj–Sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc , 2019, Terra Nova.

[16]  W. Griffin,et al.  Late Cretaceous subduction-related magmatism on the southern edge of Sabzevar basin, NE Iran , 2019, Journal of the Geological Society.

[17]  M. Parada,et al.  Mantle driven cretaceous flare-ups in Cordilleran arcs , 2019, Lithos.

[18]  S. Paterson,et al.  Spatiotemporal magmatic focusing in upper-mid crustal plutons of the Sierra Nevada arc , 2018, Earth and Planetary Science Letters.

[19]  M. Billen,et al.  Decoupling of plate-asthenosphere motion caused by non-linear viscosity during slab folding in the transition zone , 2018, Physics of the Earth and Planetary Interiors.

[20]  F. Salvini,et al.  The Post‐Eocene Evolution of the Doruneh Fault Region (Central Iran): The Intraplate Response to the Reorganization of the Arabia‐Eurasia Collision Zone , 2017 .

[21]  A. Yassaghi,et al.  Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U‐Th/He thermochronometry: Evidence for the Arabia‐Eurasia collision in the NW Iranian Plateau , 2017 .

[22]  J. Chapman,et al.  Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application , 2017, Scientific Reports.

[23]  M. Billen,et al.  Coupled effects of phase transitions and rheology in 2‐D dynamical models of subduction , 2017 .

[24]  J. Valley,et al.  Slab-Triggered Arc Flare-up in the Cretaceous Median Batholith and the Growth of Lower Arc Crust, Fiordland, New Zealand , 2017 .

[25]  J. Schwartz,et al.  The tempo of continental arc construction in the Mesozoic Median Batholith, Fiordland, New Zealand , 2017 .

[26]  W. Griffin,et al.  Subduction, high‐P metamorphism, and collision fingerprints in South Iran: Constraints from zircon U‐Pb and mica Rb‐Sr geochronology , 2017 .

[27]  G. Leonard,et al.  Ignimbrite flare-ups and their drivers: A New Zealand perspective , 2016 .

[28]  F. Wobbe,et al.  Temporal histories of Cordilleran continental arcs: testing models for magmatic episodicity , 2016 .

[29]  E. Christiansen,et al.  Slab-rollback ignimbrite flareups in the southern Great Basin and other Cenozoic American arcs: A distinct style of arc volcanism , 2016 .

[30]  O. Oncken,et al.  Zagros blueschists: Episodic underplating and long-lived cooling of a subduction zone , 2016 .

[31]  P. DeCelles,et al.  Quantifying crustal thickness over time in magmatic arcs , 2015, Scientific Reports.

[32]  P. DeCelles,et al.  Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera , 2015 .

[33]  T. Miyazaki,et al.  Reply to comment by I. Pineda‐Velasco, T. T. Nguyen, H. Kitagawa, and E. Nakamura on “Diverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modeling” , 2015 .

[34]  C. Langmuir,et al.  The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes , 2015 .

[35]  A. Schmitt,et al.  Recording the transition from flare-up to steady-state arc magmatism at the Purico–Chascon volcanic complex, northern Chile , 2015 .

[36]  F. Neubauer,et al.  Rapid Eocene extension in the Chapedony metamorphic core complex, Central Iran: Constraints from 40Ar/39Ar dating , 2015 .

[37]  S. Graham,et al.  Cyclical processes in the North American Cordilleran orogenic system , 2015 .

[38]  J. Saleeby,et al.  The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs , 2015 .

[39]  M. Ducea,et al.  Arc magmatic tempos: Gathering the evidence , 2015 .

[40]  N. Riggs,et al.  Quickening the Pulse: Fractal Tempos in Continental Arc Magmatism , 2015 .

[41]  B. Jicha,et al.  Magma Production Rates for Intraoceanic Arcs , 2015 .

[42]  P. DeCelles,et al.  High-Volume Magmatic Events in Subduction Systems , 2015 .

[43]  J. Wijbrans,et al.  Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: Implications for Aegean and Aeolian arc volcanism , 2015 .

[44]  B. Beate,et al.  The Yanaurcu volcano (Western Cordillera, Ecuador): A field, petrographic, geochemical, isotopic and geochronological study , 2015 .

[45]  M. Chiaradia Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective , 2015, Scientific Reports.

[46]  J. Santos,et al.  Cadomian (Ediacaran-Cambrian) arc magmatism in the ChahJam-Biarjmand metamorphic complex (Iran): magmatism along the northern active margin of Gondwana , 2015 .

[47]  Fariba Kargaranbafghi Lithospheric thinning associated with formation of a metamorphic core complex and subsequent formation of the Iranian plateau , 2015 .

[48]  J. Blichert‐Toft,et al.  Growth of upper plate lithosphere controls tempo of arc magmatism: Constraints from Al-diffusion kinetics and coupled Lu-Hf and Sm-Nd chronology , 2015 .

[49]  F. Corfu,et al.  Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data , 2014 .

[50]  J. G. Shellnutt,et al.  Correlation between magmatism of the Ladakh Batholith and plate convergence rates during the India–Eurasia collision , 2014 .

[51]  M. Manga,et al.  The role of magmatically driven lithospheric thickening on arc front migration , 2014 .

[52]  J. Kimura,et al.  Calculation of water‐bearing primary basalt and estimation of source mantle conditions beneath arcs: PRIMACALC2 model for WINDOWS , 2014 .

[53]  J. Nakajima,et al.  Diverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modeling , 2014 .

[54]  L. Lara,et al.  Geochemical variations in the Central Southern Volcanic Zone, Chile (38–43°S): The role of fluids in generating arc magmas , 2014 .

[55]  Abbas Bahroudi,et al.  Synchronous deformation on orogenic plateau margins: Insights from the Arabia–Eurasia collision , 2013 .

[56]  Yue-heng Yang,et al.  Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes , 2013 .

[57]  M. Khatib,et al.  Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny , 2013 .

[58]  N. McQuarrie,et al.  Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction , 2013 .

[59]  H. Marschall,et al.  Arc magmas sourced from melange diapirs in subduction zones , 2012 .

[60]  D. Garbe‐Schönberg,et al.  Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): Constraints on mantle wedge and slab input compositions , 2012 .

[61]  O. Lacombe,et al.  Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence , 2012 .

[62]  M. Tiepolo,et al.  Geochemistry and zircon U–Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan Zone, Iran , 2011 .

[63]  B. Wernicke,et al.  A Paleogene extensional arc flare‐up in Iran , 2011 .

[64]  F. Corfu,et al.  U–Pb dating and emplacement history of granitoid plutons in the northern Sanandaj–Sirjan Zone, Iran , 2011 .

[65]  W. Frank,et al.  Magmatic and metamorphic evolution of the Shotur Kuh metamorphic complex (Central Iran) , 2011 .

[66]  G. Abers,et al.  Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide , 2011 .

[67]  M. Ghorbani,et al.  Geochemistry and U-Pb zircon geochronology of the Alvand plutonic complex in Sanandaj-Sirjan Zone (Iran): New evidence for Jurassic magmatism , 2010 .

[68]  R. Katz,et al.  Melting above the anhydrous solidus controls the location of volcanic arcs , 2010, Nature.

[69]  Yue-heng Yang,et al.  Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf–O Isotopes and U–Pb Age , 2010 .

[70]  Yue-heng Yang,et al.  Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry , 2010 .

[71]  E. Humphreys Relation of flat subduction to magmatism and deformation in the western United States , 2009 .

[72]  P. DeCelles,et al.  Cyclicity in Cordilleran orogenic systems , 2009 .

[73]  R. Flood,et al.  Zircon Hf Isotopic Evidence for Mixing of Crustal and Silicic Mantle-derived Magmas in a Zoned Granite Pluton, Eastern Australia , 2009 .

[74]  F. Corfu,et al.  Zircon M257 ‐ a Homogeneous Natural Reference Material for the Ion Microprobe U‐Pb Analysis of Zircon , 2008 .

[75]  M. Allen,et al.  Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling , 2008 .

[76]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[77]  William D. Gosnold,et al.  Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up , 2007 .

[78]  M. Barton,et al.  Igniting flare-up events in Cordilleran arcs , 2007 .

[79]  P. Renne,et al.  Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran , 2007 .

[80]  C. M. Gray,et al.  Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon , 2007, Science.

[81]  Yue-heng Yang,et al.  Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology , 2006 .

[82]  W. Spakman,et al.  Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions , 2006 .

[83]  J. Viramonte,et al.  Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andes: a thermomechanical perspective , 2006, Geological Society, London, Special Publications.

[84]  O. Oncken,et al.  Central and Southern Andean Tectonic Evolution Inferred from Arc Magmatism , 2006 .

[85]  M. Basei,et al.  4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon , 2005 .

[86]  A. Crawford,et al.  Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics , 2005 .

[87]  L. Jolivet,et al.  Convergence history across Zagros (Iran): constraints from collisional and earlier deformation , 2005 .

[88]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[89]  J. Baker,et al.  Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS , 2004 .

[90]  J. Golonka Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic , 2004 .

[91]  H. Bungum,et al.  AN APPROACH TO A COMPREHENSIVE MOHO DEPTH MAP AND CRUSTAND UPPER MANTLE VELOCITY MODEL FOR IRAN , 2004 .

[92]  Kelin Wang,et al.  Thermal modelling of the Laramide orogeny: testing the flat-slab subduction hypothesis , 2003 .

[93]  Robert D. Tucker,et al.  The Saghand Region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana Tectonics , 2003 .

[94]  Katherine A. Kelley,et al.  Composition of altered oceanic crust at ODP Sites 801 and 1149 , 2003 .

[95]  R. Trumbull,et al.  U–Pb zircon chronostratigraphy of early-Pliocene ignimbrites from La Pacana, north Chile: implications for the formation of stratified magma chambers , 2003 .

[96]  J. Blichert‐Toft,et al.  Hafnium isotopes in basalts from the southern Mid‐Atlantic Ridge from 40°S to 55°S: Discovery and Shona plume–ridge interactions and the role of recycled sediments , 2002 .

[97]  S. Self,et al.  Basalt triggering of the c. AD 1305 Kaharoa rhyolite eruption, Tarawera Volcanic Complex, New Zealand , 2002 .

[98]  W. Griffin,et al.  Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes , 2002 .

[99]  P. Ulmer Partial melting in the mantle wedge — the role of H2O in the genesis of mantle-derived ‘arc-related’ magmas , 2001 .

[100]  J. Blichert‐Toft,et al.  A hafnium isotope and trace element perspective on melting of the depleted mantle , 2001 .

[101]  R. Trumbull,et al.  Magmatic Evolution of the La Pacana Caldera System, Central Andes, Chile: Compositional Variation of Two Cogenetic, Large-Volume Felsic Ignimbrites , 2001 .

[102]  R. Howarth,et al.  Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr‐Isotope Curve for 0–509 Ma and Accompanying Look‐up Table for Deriving Numerical Age , 2001, The Journal of Geology.

[103]  R. Trumbull,et al.  Magma evolution in the Purico ignimbrite complex, northern Chile: evidence for zoning of a dacitic magma by injection of rhyolitic melts following mafic recharge , 2001, Contributions to Mineralogy and Petrology.

[104]  M. Ducea The California arc: Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups , 2001 .

[105]  W. Spakman,et al.  Subduction and slab detachment in the Mediterranean-Carpathian region. , 2000, Science.

[106]  G. Wörner,et al.  Geochronology (40Ar/39Ar, K-Ar and He-exposure ages) of Cenozoic magmatic rocks from Northern Chile (18-22°S): implications for magmatism and tectonic evolution of the central Andes , 2000 .

[107]  J. Blundy,et al.  SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C , 2000 .

[108]  Kazuya Takahashi,et al.  JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium , 2000 .

[109]  J. Schilling,et al.  Plume‐ridge interactions of the Discovery and Shona mantle plumes with the southern Mid‐Atlantic Ridge (40°‐55°S) , 1999 .

[110]  T. Plank,et al.  Element transport from slab to volcanic front at the Mariana arc , 1997 .

[111]  M. Wortel,et al.  Trench migration and subduction zone geometry , 1997 .

[112]  D. Peate,et al.  Tectonic Implications of the Composition of Volcanic Arc Magmas , 1995 .

[113]  F. Poitrasson,et al.  Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography , 1994 .

[114]  P. Francis,et al.  Late Cenozoic rates of magmatic activity in the Central Andes and their relationships to continental crust formation and thickening , 1994, Journal of the Geological Society.

[115]  K. Govindaraju,et al.  1994 compilation of working values and sample description for 383 geostandards , 1994 .

[116]  C. Johnson Large‐scale crust formation and lithosphere modification beneath Middle to Late Cenozoic calderas and volcanic fields, western North America , 1991 .

[117]  R. Kay,et al.  Creation and destruction of lower continental crust , 1991 .

[118]  M. McCulloch,et al.  Geochemical and geodynamical constraints on subduction zone magmatism , 1991 .

[119]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[120]  M. Dungan,et al.  Crust-magma interactions and the evolution of arc magmas: The San Pedro–Pellado volcanic complex, southern Chilean Andes , 1987 .

[121]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[122]  S. Hart A large-scale isotope anomaly in the Southern Hemisphere mantle , 1984, Nature.

[123]  M. Berberian,et al.  Towards a paleogeography and tectonic evolution of Iran: Reply , 1981 .

[124]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .