Analysis and design of a secure key exchange scheme

We propose a new key exchange scheme where the secret key is obtained by multiplying the powers of block upper triangular matrices. After studying the cryptographic properties of these block matrices, the theoretical aspects of this scheme are analyzed, concluding that common ciphertext attacks are not applicable to this cryptosystem. Moreover, our proposal is compared with the Diffie-Hellman scheme achieving satisfactory results.

[1]  Rafael Ignacio Álvarez Sánchez Aplicaciones de las matrices por bloques a los criptosistemas de cifrado de flujo , 2005 .

[2]  Alfred Menezes,et al.  The Discrete Logarithm Problem in GL(n, q) , 1997, Ars Comb..

[3]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[4]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[5]  Martin E. Hellman,et al.  An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[6]  N. Koblitz A Course in Number Theory and Cryptography , 1987 .

[7]  Joan Josep Climent Coloma Propiedades espectrales de matrices: el índice de matrices triangulares por bloques. La raíz Perron de matrices cocíclicas por bloques , 1993 .

[8]  V. Varadharajan,et al.  Public Key distribution in matrix rings , 1984 .

[9]  Francisco Ferrández,et al.  Applying quick exponentiation for block upper triangular matrices , 2006, Appl. Math. Comput..

[10]  Joachim Rosenthal,et al.  Cryptanalysis of the CFVZ cryptosystem , 2007, Adv. Math. Commun..

[11]  Chui Young Yoon,et al.  Distribution of digital contents based on public key considering execution speed and security , 2005, Inf. Sci..

[12]  W. Greub Linear Algebra , 1981 .

[13]  William Stallings,et al.  Cryptography and Network Security: Principles and Practice , 1998 .

[14]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[15]  Chin-Chen Chang,et al.  Security enhancement for digital signature schemes with fault tolerance in RSA , 2007, Inf. Sci..

[16]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[17]  Joan-Josep Climent,et al.  A nonlinear elliptic curve cryptosystem based on matrices , 2006, Appl. Math. Comput..

[18]  Don Coppersmith,et al.  Discrete logarithms inGF(p) , 2005, Algorithmica.