Inception and Evolution of La Corona Lava Tube System (Lanzarote, Canary Islands, Spain)

Growing interest in studying large terrestrial lava tubes is motivated in part by their analogy with their extra‐terrestrial counterparts. However, on Earth, the formation of such structures is still poorly understood. Here, the lava tube system of La Corona (Lanzarote, Canary Islands, Spain) is studied to identify how pre‐existing stratigraphy can govern a lava tube's evolution. Combining terrestrial laser scanner technology with field observations and geochemical analyses of the pre‐existing lava enabled us to reconstruct the three‐dimensional geometry of the lava tube system, the paleo‐surface trough which it developed, and the volcanic series into which it carved its path. We show that a pyroclastic layer played a key role in the development of the lava tube. The layer—Derived from late Quaternary Strombolian activity—Is traceable along almost the full length of the tube path and defines the paleo‐topography. The excavation process mostly happens because of the mechanical strength of the substrate, that controls the widening of the growing lava tube. Other influential parameters controlling erosion include slope variations of the paleo‐surface (i.e., knickpoints), and the lava physical properties. Since weak layers such as regolith are a common feature of extra‐terrestrial lava flows, the processes seen at La Corona to the may be highly relevant to the development of planetary lava tube systems.

[1]  A. Z. Miller,et al.  A roadmap for planetary caves science and exploration , 2021, Nature Astronomy.

[2]  Helge A. Lauterbach,et al.  Detection, imaging and analysis of lava tubes for planetary analogue studies using electric methods (ERT) , 2021 .

[3]  M. Massironi,et al.  Lava tubes on Earth, Moon and Mars: a review on their size and morphology revealed by comparative planetology , 2020, Earth-Science Reviews.

[4]  J. Devidal,et al.  The historical basanite - alkali basalt - tholeiite suite at Lanzarote, Canary Islands: Carbonated melts of heterogeneous mantle source? , 2018, Chemical Geology.

[5]  D. Clague,et al.  Magma ascent and lava flow emplacement rates during the 2011 Axial Seamount eruption based on CO2 degassing , 2018, Earth and Planetary Science Letters.

[6]  A. Marco,et al.  A reappraisal of the stratigraphy and chronology of Early Pliocene palaeontological sites from Lanzarote Island containing fossil terrestrial animals , 2016 .

[7]  M. Massironi,et al.  Are terrestrial plumes from motionless plates analogues to Martian plumes feeding the giant shield volcanoes? , 2014 .

[8]  P. van den Bogaard The origin of the Canary Island Seamount Province - New ages of old seamounts , 2013, Scientific Reports.

[9]  G. Cushing,et al.  CANDIDATE CAVE ENTRANCES ON MARS , 2012 .

[10]  S. Werner,et al.  The African Plate: A history of oceanic crust accretion and subduction since the Jurassic , 2012 .

[11]  R. C. Kerr,et al.  Mathematical modeling of thermomechanical erosion beneath Proterozoic komatiitic basaltic sinuous rilles in the Cape Smith Belt, New Québec, Canada , 2011 .

[12]  A. Iwasaki,et al.  Possible lunar lava tube skylight observed by SELENE cameras , 2009 .

[13]  T. Iliffe,et al.  The Corona lava tube, Lanzarote: geology, habitat diversity and biogeography , 2009, Marine Biodiversity.

[14]  M. Massironi,et al.  Very long pahoehoe inflated basaltic lava flows in the Payenia volcanic province (Mendoza and la Pampa, Argentina) , 2008 .

[15]  R. Greeley,et al.  Erosion by flowing lava: geochemical evidence in the Cave Basalt, Mount St. Helens, Washington , 2004 .

[16]  J. C. Carracedo,et al.  LA ERUPCION Y EL TUBO VOLCANICO DEL VOLCAN CORONA (LANZAROTE, ISLAS CANARIAS) , 2003 .

[17]  C. Lundstrom,et al.  U-series disequilibria in volcanic rocks from the Canary Islands: Plume versus lithospheric melting , 2003 .

[18]  R. C. Kerr Thermal erosion by laminar lava flows , 2001 .

[19]  R. C. Kerr,et al.  Analytical/numerical modeling of komatiite lava emplacement and thermal erosion at Perseverance, Western Australia , 2001 .

[20]  J. Canales,et al.  Magmatic underplating in the Canary Archipelago , 2000 .

[21]  N. Rogers,et al.  Melt generation beneath ocean islands: a U-Th-Ra isotope study from Lanzarote in the Canary Islands , 1999 .

[22]  Harry Pinkerton,et al.  Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms , 1999 .

[23]  John V. Smith Interpretation of domainal groundmass textures in basalt lavas of the southern Lamington Volcanics, eastern Australia , 1998 .

[24]  Stephen Self,et al.  Some physical requirements for the emplacement of long basaltic lava flows , 1998 .

[25]  R. Greeley,et al.  Erosion by flowing lava: Field evidence , 1998 .

[26]  James P. Kauahikaua,et al.  Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai'i , 1998 .

[27]  Simon Day,et al.  Hotspot volcanism close to a passive continental margin: the Canary Islands , 1998, Geological Magazine.

[28]  B. Raymahashay,et al.  Spheroidal weathering of Deccan Basalt: a three-mineral model , 1998, Quarterly Journal of Engineering Geology.

[29]  Lithgow-Bertelloni,et al.  Coupling of south american and african plate motion and plate deformation , 1998, Science.

[30]  E. Ancochea,et al.  Volcanic complexes in the eastern ridge of the Canary Islands: the Miocene activity of the island of Fuerteventura , 1996 .

[31]  Richard A. Jarvis,et al.  On the cross‐sectional geometry of thermal erosion channels formed by turbulent lava flows , 1995 .

[32]  D. W. Peterson,et al.  Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii , 1994 .

[33]  J. P. Kauahikaua,et al.  Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea volcano, Hawaii , 1994 .

[34]  P. Rabinowitz,et al.  Effects of Canary hotspot volcanism on structure of oceanic crust off Morocco , 1991 .

[35]  E. Bard,et al.  U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years , 1990, Nature.

[36]  J. Duplessy,et al.  Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years , 1987, Nature.

[37]  N. Shackleton,et al.  Oxygen isotopes and sea level , 1986, Nature.

[38]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[39]  R. Duncan Age progressive volcanism in the New England Seamounts and the opening of the central Atlantic Ocean , 1984 .

[40]  W. J. Morgan Hotspot Tracks and the Early Rifting of the Atlantic , 1983 .

[41]  James W. Head,et al.  Volcanism on Mars , 1981, Nature.

[42]  T. J. Griffin,et al.  A major lava tube system from Undara Volcano, North Queensland , 1975 .

[43]  R. Greeley Mariner 9 photographs of small volcanic structures on Mars , 1973 .

[44]  N. Watkins,et al.  Potassium-argon ages, volcanic stratigraphy, and geomagnetic polarity history of the Canary Islands; Tenerife, La Palma and Hierro , 1972 .

[45]  R. Greeley,et al.  Lava Tubes of the Cave Basalt, Mount St. Helens, Washington , 1972 .

[46]  N. Watkins,et al.  Potassium-argon ages, volcanic stratigraphy, and geomagnetic polarity history of the Canary Islands; Lanzarote, Fuerteventura, Gran Canaria, and La Gomera , 1971 .

[47]  Ronald Greeley,et al.  Lava tubes and channels in the lunar Marius Hills , 1971 .

[48]  C. Ollier Causes of spheroidal weathering , 1971 .

[49]  S. Santín Pegmatitoides in the horizontal basalts (series I) of lanzarote and fuerteventura Islands , 1969 .

[50]  M. Massironi,et al.  Volcanic Caves of Lanzarote: A Natural Laboratory for Understanding Volcano-Speleogenetic Processes and Planetary Caves , 2019, Geoheritage, Geoparks and Geotourism.

[51]  Katrin Baumgartner Volcanoes. A planetary perspective , 2018 .

[52]  Takahide Mizuno,et al.  Exploration of Lunar Holes, Possible Skylights of Underlying Lava Tubes, by Smart Lander for Investigating Moon (SLIM) , 2012 .

[53]  M. Detay Volcanospéléologie en ISLANDE perspectives scientifiques et émergence du géotourisme , 2011 .

[54]  C. Vega,et al.  Sedimentología, estratigrafía, dinámica sedimentaria y evolución de El Jable (Lanzarote). Propuesta de gestión. , 2010 .

[55]  J. Carracedo,et al.  Climatic changes over the last 5,000,000years as recorded in the Canary Islands , 2003 .

[56]  C. Ruiz,et al.  Unidades geomorfológicas del macizo volcánico antiguo de Famara (Lanzarote, Islas Canarias) , 2002 .

[57]  J. Mylroie,et al.  DEVELOPMENT AND MORPHOLOGY OF KAZUMURA CAVE, HAWAII , 2001 .

[58]  Kevin L. Allred,et al.  DEVELOPMENT AND MORPHOLOGY OF KAZUMURA CAVE, HAWAII , 1997 .

[59]  S. Kempe Lava falls: a major factor for the enlargements of lava tubes of the Ai-la'au Shield Phase, Kilauea, Hawaii , 1997 .

[60]  J. Kauahikaua,et al.  Morphology of extinct lava tubes and the implications for tube evolution, Chain of Craters Road, Hawaii Volcanoes National Park, Hawaii , 1992 .

[61]  Walter R. Roest,et al.  Magnetic interpretation using the 3-D analytic signal , 1992 .

[62]  J. Donnelly-Nolan,et al.  Selected caves and lava-tube systems in and near Lava Beds National Monument, California , 1990 .

[63]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[64]  V. V. Busarev,et al.  Lunar bases and space activities of the 21st century , 1988 .

[65]  H. Schouten,et al.  Plate kinematics of the central Atlantic , 1986 .

[66]  F. Horz Lava tubes - Potential shelters for habitats , 1985 .

[67]  H. Roeser Magnetic Anomalies in the Magnetic Quiet Zone off Morocco , 1982 .