On Distributed Convex Optimization Under Inequality and Equality Constraints

We consider a general multi-agent convex optimization problem where the agents are to collectively minimize a global objective function subject to a global inequality constraint, a global equality constraint, and a global constraint set. The objective function is defined by a sum of local objective functions, while the global constraint set is produced by the intersection of local constraint sets. In particular, we study two cases: one where the equality constraint is absent, and the other where the local constraint sets are identical. We devise two distributed primal-dual subgradient algorithms based on the characterization of the primal-dual optimal solutions as the saddle points of the Lagrangian and penalty functions. These algorithms can be implemented over networks with dynamically changing topologies but satisfying a standard connectivity property, and allow the agents to asymptotically agree on optimal solutions and optimal values of the optimization problem under the Slater's condition.

[1]  Magnus Egerstedt,et al.  Optimization of Multi-agent Motion Programs with Applications to Robotic Marionettes , 2009, HSCC.

[2]  Angelia Nedic,et al.  Subgradient Methods for Saddle-Point Problems , 2009, J. Optimization Theory and Applications.

[3]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[4]  Karl Henrik Johansson,et al.  Subgradient methods and consensus algorithms for solving convex optimization problems , 2008, 2008 47th IEEE Conference on Decision and Control.

[5]  John N. Tsitsiklis,et al.  Problems in decentralized decision making and computation , 1984 .

[6]  Ali Jadbabaie,et al.  Decentralized Control of Connectivity for Multi-Agent Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[7]  Jorge Cortés,et al.  Distributed algorithms for reaching consensus on general functions , 2008, Autom..

[8]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[9]  J.N. Tsitsiklis,et al.  Convergence in Multiagent Coordination, Consensus, and Flocking , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[10]  Hua Wei,et al.  An interior point nonlinear programming for optimal power flow problems with a novel data structure , 1997 .

[11]  Asuman E. Ozdaglar,et al.  Distributed Subgradient Methods for Multi-Agent Optimization , 2009, IEEE Transactions on Automatic Control.

[12]  Alireza Tahbaz-Salehi,et al.  On consensus over random networks , 2006 .

[13]  Panos M. Pardalos,et al.  Convex optimization theory , 2010, Optim. Methods Softw..

[14]  Jorge Cortés,et al.  Analysis and design of distributed algorithms for χ-consensus , 2006 .

[15]  Ruggero Carli,et al.  Distributed averaging on digital erasure networks , 2011, Autom..

[16]  Secundino Soares,et al.  Optimal active power dispatch combining network flow and interior point approaches , 2003 .

[17]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[18]  Stephen P. Boyd,et al.  Fast linear iterations for distributed averaging , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[19]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[20]  Angelia Nedic,et al.  Distributed and Recursive Parameter Estimation in Parametrized Linear State-Space Models , 2008, IEEE Transactions on Automatic Control.

[21]  Benjamin Van Roy,et al.  Consensus Propagation , 2005, IEEE Transactions on Information Theory.

[22]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[23]  Rayadurgam Srikant,et al.  The Mathematics of Internet Congestion Control , 2003 .

[24]  John N. Tsitsiklis,et al.  Convergence Speed in Distributed Consensus and Averaging , 2009, SIAM J. Control. Optim..

[25]  Asuman E. Ozdaglar,et al.  Constrained Consensus and Optimization in Multi-Agent Networks , 2008, IEEE Transactions on Automatic Control.

[26]  A. Robert Calderbank,et al.  Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures , 2007, Proceedings of the IEEE.

[27]  R.M. Murray,et al.  Asynchronous Distributed Averaging on Communication Networks , 2007, IEEE/ACM Transactions on Networking.

[28]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[29]  Asuman E. Ozdaglar,et al.  Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods , 2008, SIAM J. Optim..

[30]  A. Banerjee Convex Analysis and Optimization , 2006 .

[31]  J. Cortes Analysis and design of distributed algorithms for X-consensus , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[32]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[33]  Stergios I. Roumeliotis,et al.  Optimal Sensing Strategies for Mobile Robot Formations: Resource-Constrained Localization , 2005, Robotics: Science and Systems.

[34]  Anders Rantzer,et al.  Using Game Theory for Distributed Control Engineering , 2008 .

[35]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[36]  Alireza Tahbaz-Salehi,et al.  A Necessary and Sufficient Condition for Consensus Over Random Networks , 2008, IEEE Transactions on Automatic Control.

[37]  Michael Rabbat,et al.  Decentralized source localization and tracking , 2004 .

[38]  Robert D. Nowak,et al.  Distributed EM algorithms for density estimation and clustering in sensor networks , 2003, IEEE Trans. Signal Process..

[39]  R. Srikant,et al.  Quantized Consensus , 2006, 2006 IEEE International Symposium on Information Theory.

[40]  M. Ani Hsieh,et al.  An Optimal Approach to Collaborative Target Tracking with Performance Guarantees , 2009, J. Intell. Robotic Syst..

[41]  Randal W. Beard,et al.  Distributed Consensus in Multi-vehicle Cooperative Control - Theory and Applications , 2007, Communications and Control Engineering.

[42]  Sonia Martínez,et al.  Discrete-time dynamic average consensus , 2010, Autom..

[43]  John R. Spletzer,et al.  Convex Optimization Strategies for Coordinating Large-Scale Robot Formations , 2007, IEEE Transactions on Robotics.

[44]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[45]  Derong Liu The Mathematics of Internet Congestion Control , 2005, IEEE Transactions on Automatic Control.