Optimization of geometrically nonlinear buckling sensitive structures

[1]  Lucien A. Schmit,et al.  An integrated approach to the synthesis of geometrically non‐linear structures , 1988 .

[2]  Peter Wriggers,et al.  A quadratically convergent procedure for the calculation of stability points in finite element analysis , 1988 .

[3]  N. S. Khot,et al.  Minimum weight design of truss structures with geometric nonlinear behavior , 1985 .

[4]  J. M. T. Thompson,et al.  Optimization as a generator of structural instability , 1972 .

[5]  Isaac Fried,et al.  Orthogonal trajectory accession to the nonlinear equilibrium curve , 1984 .

[6]  Peter Wriggers,et al.  A general procedure for the direct computation of turning and bifurcation points , 1990 .

[7]  J. Z. Zhu,et al.  The finite element method , 1977 .

[8]  J. S. Arora,et al.  Design sensitivity analysis of non-linear buckling load , 1988 .

[9]  Ekkehard Ramm,et al.  Efficient modeling in shape optimal design , 1991 .

[10]  Manohar P. Kamat,et al.  OPTIMIZATION OF SPACE TRUSSES AGAINST INSTABILITY USING DESIGN SENSITIVITY DERIVATIVES , 1985 .

[11]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[12]  Alastair Spence,et al.  Non-simple Turning Points and Cusps , 1982 .

[13]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[14]  R. Seydel Numerical computation of branch points in nonlinear equations , 1979 .

[15]  Allan D. Jepson,et al.  Folds in Solutions of Two Parameter Systems and Their Calculation. Part I , 1985 .