Recent progress towards the application of hyperthermophiles and their enzymes.

The discovery of extremophiles has drastically changed our understanding towards the diversity of life itself and the conditions under which it can be sustained. Extremophiles have evolved to withstand and multiply under the extremes of temperature, pressure, pH and salinity. Hyperthermophiles are the group that have adapted to high temperature; many have been found to grow at temperatures above the boiling point of water. This review focuses on recent advances in application-based research on hyperthermophiles and their thermostable enzymes.

[1]  W. D. de Vos,et al.  Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. , 2001, European journal of biochemistry.

[2]  T. Fukui,et al.  A Membrane-Bound Archaeal Lon Protease Displays ATP-Independent Proteolytic Activity towards Unfolded Proteins and ATP-Dependent Activity for Folded Proteins , 2002, Journal of bacteriology.

[3]  K. Harata,et al.  X‐ray structure of a membrane‐bound β‐glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii , 2004, Proteins.

[4]  Rie Matsumi,et al.  Reverse Gyrase Is Not a Prerequisite for Hyperthermophilic Life , 2004, Journal of bacteriology.

[5]  M. Rossi,et al.  An Autonomously Replicating Transforming Vector forSulfolobus solfataricus , 1998, Journal of bacteriology.

[6]  D. Hafenbradl,et al.  Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C , 1997, Extremophiles.

[7]  U. Bornscheuer Microbial carboxyl esterases: classification, properties and application in biocatalysis. , 2002, FEMS microbiology reviews.

[8]  C. Schleper,et al.  A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating , 1995, Journal of bacteriology.

[9]  P. Wright,et al.  Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. , 2003, FEMS microbiology reviews.

[10]  M. Rossi,et al.  [15] Alcohol dehydrogenase from Sulfolobus solfataricus , 2001 .

[11]  R. Kelly,et al.  Protease I from Pyrococcus furiosus. , 2001, Methods in enzymology.

[12]  Pyrrolidone carboxylpeptidase from Thermococcus litoralis. , 1998, Methods in enzymology.

[13]  Teruyuki Nagamune,et al.  Properties of an alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix K1. , 2004, Journal of bioscience and bioengineering.

[14]  Y. Sako,et al.  An extremely heat‐stable extracellular proteinase (aeropyrolysin) from the hyperthermophilic archaeon Aeropyrum pernix K1 , 1997, FEBS letters.

[15]  T. Fukui,et al.  Genetic Evidence Identifying the True Gluconeogenic Fructose-1,6-Bisphosphatase in Thermococcus kodakaraensis and Other Hyperthermophiles , 2004, Journal of bacteriology.

[16]  Luciana Esposito,et al.  Crystal structure of the alcohol dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus at 1.85 A resolution. , 2002, Journal of molecular biology.

[17]  P. Forterre,et al.  Construction of a Shuttle Vector for, and Spheroplast Transformation of, the Hyperthermophilic Archaeon Pyrococcus abyssi , 2002, Applied and Environmental Microbiology.

[18]  L. Cerchia,et al.  An intracellular protease of the crenarchaeon Sulfolobus solfataricus, which has sequence similarity to eukaryotic peptidases of the CD clan. , 2002, The Biochemical journal.

[19]  W. D. de Vos,et al.  Purification, characterization, and molecular modeling of pyrolysin and other extracellular thermostable serine proteases from hyperthermophilic microorganisms. , 2001, Methods in enzymology.

[20]  I. Tanaka,et al.  The X-ray crystal structure of pyrrolidone–carboxylate peptidase from hyperthermophilic archaea Pyrococcus horikoshii , 2004, Journal of Structural and Functional Genomics.

[21]  Haruyuki Atomi,et al.  Targeted Gene Disruption by Homologous Recombination in the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1 , 2003, Journal of bacteriology.

[22]  D. Lovley,et al.  Extending the Upper Temperature Limit for Life , 2003, Science.

[23]  J. Cavanagh,et al.  Structural and catalytic response to temperature and cosolvents of carboxylesterase EST1 from the extremely thermoacidophilic archaeon Sulfolobus solfataricus P1. , 2002, Biotechnology and bioengineering.

[24]  R. Kelly,et al.  Homomultimeric protease and putative bacteriocin homolog from Thermotoga maritima. , 2001, Methods in enzymology.

[25]  K. Ishikawa,et al.  Active site of deblocking aminopeptidase from Pyrococcus horikoshii. , 2002, Biochemical and biophysical research communications.

[26]  T. Fukui,et al.  Concerted Action of Diacetylchitobiose Deacetylase and Exo-β-D-glucosaminidase in a Novel Chitinolytic Pathway in the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1* , 2004, Journal of Biological Chemistry.

[27]  L. Pearl,et al.  Crystal structure of the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: resilience as a key factor in thermostability. , 1997, Journal of molecular biology.

[28]  S. Kanaya,et al.  Active Subtilisin-Like Protease from a Hyperthermophilic Archaeon in a Form with a Putative Prosequence , 2001, Applied and Environmental Microbiology.

[29]  Y. Sako,et al.  Purification and characterization of an intracellular heat-stable proteinase (pernilase) from the marine hyperthermophilic archaeon Aeropyrum pernix K1 , 1999, Extremophiles.

[30]  B. Hao,et al.  Crystal structure of a novel carboxypeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. , 2002, Structure.

[31]  Stan J. J. Brouns,et al.  DNA family shuffling of hyperthermostable beta-glycosidases. , 2002, The Biochemical journal.

[32]  Bertus van den Burg,et al.  Extremophiles as a source for novel enzymes. , 2003 .

[33]  S H Kim,et al.  Crystal structure of an intracellular protease from Pyrococcus horikoshii at 2-A resolution. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  G. Manco,et al.  The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. , 2001, Journal of molecular biology.

[35]  J. Lebbink,et al.  Comparative structural analysis and substrate specificity engineering of the hyperthermostable beta-glucosidase CelB from Pyrococcus furiosus. , 2000, Biochemistry.

[36]  T. Fukui,et al.  Characterization of an Exo-β-d-Glucosaminidase Involved in a Novel Chitinolytic Pathway from the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1 , 2003, Journal of bacteriology.

[37]  Uwe T Bornscheuer,et al.  Methods to increase enantioselectivity of lipases and esterases. , 2002, Current opinion in biotechnology.

[38]  V. Ramakrishnan,et al.  Purification and characterization of a cobalt‐activated carboxypeptidase from the hyperthermophilic archaeon Pyrococcus furiosus , 2008, Protein science : a publication of the Protein Society.

[39]  H. Atomi,et al.  Extremely Stable and Versatile Carboxylesterase from a Hyperthermophilic Archaeon , 2002, Applied and Environmental Microbiology.

[40]  M. Singleton,et al.  X-ray structure of pyrrolidone carboxyl peptidase from the hyperthermophilic archaeon Thermococcus litoralis. , 1999, Structure.

[41]  T. Imanaka,et al.  Thiol protease from Thermococcus kodakaraensis KOD1. , 2001, Methods in enzymology.

[42]  M. Ota,et al.  X-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus, and its cys-free mutant. , 2001, Journal of biochemistry.

[43]  H. Oki,et al.  Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus. , 1998, Journal of molecular biology.

[44]  C. Schleper,et al.  Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus: construction and testing of viral shuttle vectors. , 1999, Genetics.

[45]  M. Rossi,et al.  A novel extracellular subtilisin-like protease from the hyperthermophile Aeropyrum pernix K1: biochemical properties, cloning, and expression , 2003, Extremophiles.

[46]  G. Antranikian,et al.  Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. , 2002, Current opinion in chemical biology.

[47]  D. Demirjian,et al.  Enzymes from extremophiles. , 2001, Current opinion in chemical biology.

[48]  H. Schreier,et al.  Prolyl oligopeptidase from Pyrococcus furiosus. , 2001, Methods in enzymology.

[49]  H. Atomi,et al.  Thermostable carboxylesterases from hyperthermophiles , 2004 .

[50]  Jürgen Pleiss,et al.  A Molecular Mechanism of Enantiorecognition of Tertiary Alcohols by Carboxylesterases , 2003, Chembiochem : a European journal of chemical biology.

[51]  J. Short,et al.  Carboxylesterase from Sulfolobus solfataricus P1. , 2001, Methods in enzymology.

[52]  Jeffrey H. Miller,et al.  The sequence of a subtilisin‐type protease (aerolysin) from the hyperthermophilic archaeum Pyrobaculum aerophilum reveals sites important to thermostability , 1994, Protein science : a publication of the Protein Society.

[53]  T. Fukui,et al.  Different Cleavage Specificities of the Dual Catalytic Domains in Chitinase from the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1* , 2001, The Journal of Biological Chemistry.

[54]  M. de Rosa,et al.  The production of biocatalysts and biomolecules from extremophiles. , 2002, Trends in biotechnology.

[55]  J. Madura,et al.  Kinetic and Mechanistic Studies of Prolyl Oligopeptidase from the Hyperthermophile Pyrococcus furiosus * , 2001, The Journal of Biological Chemistry.

[56]  A. Copik,et al.  Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus. , 2002, Biochemistry.

[57]  P. Blum,et al.  Targeted Disruption of the α-Amylase Gene in the Hyperthermophilic Archaeon Sulfolobus solfataricus , 2003 .

[58]  M. Maher,et al.  Structure of the prolidase from Pyrococcus furiosus. , 2004, Biochemistry.

[59]  N. Rawlings,et al.  Evolutionary Lines of Cysteine Peptidases , 2001, Biological chemistry.