Effects of abiotic factors on the nanostructure of diatom frustules—ranges and variability

[1]  Chiu-Ho Wong temperature effects , 2020, Catalysis from A to Z.

[2]  K. Richardson,et al.  Global patterns in phytoplankton biomass and community size structure in relation to macronutrients in the open ocean , 2018 .

[3]  T. Lenau,et al.  The UV filtering potential of drop-casted layers of frustules of three diatom species , 2018, Scientific Reports.

[4]  J. Gielis,et al.  Diatom Frustule Morphogenesis and Function: a Multidisciplinary Survey. , 2017, Marine genomics.

[5]  F. Daboussi,et al.  Genetic and metabolic engineering in diatoms , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  Yanyan Su,et al.  Long-term cultivation of the diatom Coscinodiscus granii at different light spectra: effects on frustule morphology , 2017, Journal of Applied Phycology.

[7]  S. Haigh,et al.  Diatom Frustules as a Biomineralized Scaffold for the Growth of Molybdenum Disulfide Nanosheets , 2016 .

[8]  K. Rottwitt,et al.  The fascinating diatom frustule—can it play a role for attenuation of UV radiation? , 2016, Journal of Applied Phycology.

[9]  S. Lu,et al.  Effects of solar UV radiation and temperature on morphology and photosynthetic performance of Chaetoceros curvisetus , 2016, Photosynthetica.

[10]  Chao Wang,et al.  Exploring temporal trend of morphological variability of a dominant diatom in response to environmental factors in a large subtropical river , 2015, Ecol. Informatics.

[11]  P. Sloot,et al.  Temperature affects the silicate morphology in a diatom , 2015, Scientific Reports.

[12]  Søren Michael Mørk Friis,et al.  Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different light wavelengths , 2015, Nano Research.

[13]  K. Rottwitt,et al.  Interference patterns and extinction ratio of the diatom Coscinodiscus granii. , 2015, Optics express.

[14]  C. Maibohm,et al.  Comparing optical properties of different species of diatoms , 2015, Photonics West - Optoelectronic Materials and Devices.

[15]  Luca De Stefano,et al.  Optical Properties of Diatom Nanostructured Biosilica in Arachnoidiscus sp: Micro-Optics from Mother Nature , 2014, PloS one.

[16]  K. Richardson,et al.  Global patterns in phytoplankton community size structure—evidence for a direct temperature effect , 2014 .

[17]  S. Jung,et al.  Effect of temperature on changes in size and morphology of the marine diatom, Ditylum brightwellii (West) Grunow (Bacillariophyceae) , 2013 .

[18]  Mahaveer D. Kurkuri,et al.  Graphene oxide decorated diatom silica particles as new nano-hybrids: towards smart natural drug microcarriers. , 2013, Journal of materials chemistry. B.

[19]  L. Moisan,et al.  Multiparametric Analyses Reveal the pH-Dependence of Silicon Biomineralization in Diatoms , 2012, PloS one.

[20]  Yelena V. Likhoshway,et al.  The Effect of Titanium, Zirconium and Tin on the Growth of Diatom Synedra Acus and Morphology of Its Silica Valves , 2012, Silicon.

[21]  K. Timmermans,et al.  MORPHOLOGICAL AND PHYSIOLOGICAL EFFECTS IN PROBOSCIA ALATA (BACILLARIOPHYCEAE) GROWN UNDER DIFFERENT LIGHT AND CO2 CONDITIONS OF THE MODERN SOUTHERN OCEAN 1 , 2012, Journal of phycology.

[22]  A. Eychmüller,et al.  Decoration of diatom biosilica with noble metal and semiconductor nanoparticles (<10 nm): assembly, characterization, and applications. , 2012, Chemistry, an Asian journal.

[23]  Ø. Moestrup,et al.  Toxin production and temperature-induced morphological variation of the diatom Pseudo-nitzschia seriata from the Arctic , 2011 .

[24]  Rudolf Merkel,et al.  Diatom frustules show increased mechanical strength and altered valve morphology under iron limitation , 2011 .

[25]  D. Sarno,et al.  Effects of salinity on the growth rate and morphology of ten Skeletonema strains , 2011 .

[26]  Deyuan Zhang,et al.  Enlargement of diatom frustules pores by hydrofluoric acid etching at room temperature , 2011, Journal of Materials Science.

[27]  L. Seuront,et al.  MORPHOLOGICAL FLEXIBILITY OF COCCONEIS PLACENTULA (BACILLARIOPHYCEAE) NANOSTRUCTURE TO CHANGING SALINITY LEVELS 1 , 2010 .

[28]  N. A. Aizdaicher,et al.  The effect of decrease in salinity on the dynamics of abundance and the cell size of Corethron Hystrix (Bacillariophyta) in laboratory culture , 2010 .

[29]  C. Bowler,et al.  Molecular Tools for Discovering the Secrets of Diatoms , 2009 .

[30]  I. Aslamov,et al.  Investigation of morphological change of Aulacoseira baicalensis using a small desktop incubator controlling light and temperature , 2009 .

[31]  Luigi Moretti,et al.  Nano-biosilica from marine diatoms: A brand new material for photonic applications , 2009 .

[32]  K. Iyer,et al.  Regiospecific assembly of gold nanoparticles around the pores of diatoms: toward three-dimensional nanoarrays. , 2009, Journal of the American Chemical Society.

[33]  L. De Stefano,et al.  Intrinsic photoluminescence of diatom shells in sensing applications , 2009, Optics + Optoelectronics.

[34]  M. Hildebrand,et al.  A self-propagating system for Ge incorporation into nanostructured silica. , 2008, Chemical communications.

[35]  J. Jiao,et al.  Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum. , 2008, ACS nano.

[36]  I. Peeken,et al.  Iron, silicate, and light co-limitation of three Southern Ocean diatom species , 2008, Polar Biology.

[37]  Clayton Jeffryes,et al.  Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. , 2008 .

[38]  Mark Hildebrand,et al.  Silicon Uptake in Diatoms Revisited: A Model for Saturable and Nonsaturable Uptake Kinetics and the Role of Silicon Transporters1[OA] , 2007, Plant Physiology.

[39]  P. Harrison,et al.  Coupled changes in the cell morphology and elemental (C, N, and Si) composition of the pennate diatom Pseudo‐nitzschia due to iron deficiency , 2007 .

[40]  K. Manoylov,et al.  Diatom Deformities from an Acid Mine Drainage Site at Friendship Hills National Historical Site, Pennsylvania , 2007 .

[41]  P. Maddalena,et al.  Highly sensitive optochemical gas detection by luminescent marine diatoms , 2007 .

[42]  A. Parker,et al.  Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate , 2007 .

[43]  K. Sandhage,et al.  Thin, conformal, and continuous SnO2 coatings on three-dimensional biosilica templates through hydroxy-group amplification and layer-by-layer alkoxide deposition. , 2007, Angewandte Chemie.

[44]  E. G. Vrieling,et al.  Salinity-dependent diatom biosilicification implies an important role of external ionic strength , 2007, Proceedings of the National Academy of Sciences.

[45]  Luca De Stefano,et al.  Playing with light in diatoms: small water organisms with a natural photonic crystal structure , 2007, SPIE Microtechnologies.

[46]  James G. Mitchell,et al.  Controlled pore structure modification of diatoms by atomic layer deposition of TiO2 , 2006 .

[47]  V. Chepurnov,et al.  Is diatom size selection by harpacticoid copepods related to grazer body size , 2006 .

[48]  James G. Mitchell,et al.  Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. , 2006, Journal of nanoscience and nanotechnology.

[49]  M. Sumper,et al.  Learning from Diatoms: Nature's Tools for the Production of Nanostructured Silica , 2006 .

[50]  Eileen J. Cox,et al.  The effects of some environmental variables on the morphology of Nitzschia frustulum (Bacillariophyta), in relation its use as a bioindicator , 2004 .

[51]  Sybille Wunsam,et al.  Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada) , 2004 .

[52]  N. Lundholm,et al.  Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia , 2004 .

[53]  David J. S. Montagnes,et al.  Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms , 2001 .

[54]  V. Chepurnov,et al.  A STUDY OF VARIATION IN VALVE MORPHOLOGY OF THE DIATOM CYCLOTELLA MENEGHINIANA IN MONOCLONAL CULTURES: EFFECT OF AUXOSPORE FORMATION AND DIFFERENT SALINITY CONDITIONS , 1999 .

[55]  E. G. Vrieling,et al.  SILICON DEPOSITION IN DIATOMS: CONTROL BY THE pH INSIDE THE SILICON DEPOSITION VESICLE , 1999 .

[56]  George N. Bennett,et al.  Genetic and metabolic engineering , 1998 .

[57]  M. Lürling,et al.  Altered cell wall morphology in nutrient‐deficient phytoplankton and its impact on grazers , 1997 .

[58]  J. Wijnholds,et al.  Oxidative stress induced by copper: defense and damage in the marine planktonic diatom Ditylum brightwellii, grown in continuous cultures with high and low zinc levels , 1994 .

[59]  R. Daley,et al.  INFLUENCE OF NATURAL ULTRAVIOLET RADIATION ON LOTIC PERIPHYTIC DIATOM COMMUNITY GROWTH, BIOMASS ACCRUAL, AND SPECIES COMPOSITION: SHORT‐TERM VERSUS LONG‐TERM EFFECTS 1, 2 , 1993 .

[60]  D. Karentz,et al.  CELL SURVIVAL CHARACTERISTICS AND MOLECULAR RESPONSES OF ANTARCTIC PHYTOPLANKTON TO ULTRAVIOLET‐B RADIATION 1 , 1991 .

[61]  P. Thompson,et al.  INFLUENCE OF IRRADIANCE ON CELL VOLUME AND CARBON QUOTA FOR TEN SPECIES OF MARINE PHYTOPLANKTON 1 , 1991 .

[62]  R. Gensemer,et al.  ROLE OF ALUMINUM AND GROWTH RATE ON CHANGES IN CELL SIZE AND SILICA CONTENT OF SILICA‐LIMITED POPULATIONS OF ASTERIONELLA RALFSII VAR. AMERICANA(BACILLARIOPHYCEAE) 1 , 1990 .

[63]  David G. Mann,et al.  Diatoms: Biology and Morphology of the Genera , 1990 .

[64]  G. Fryxell,et al.  Temperature effects on the valve structure of the bipolar diatoms Thalassiosira antarctica and Porosira glacialis , 1983, Polar Biology.

[65]  D. Kushner,et al.  Morphological changes in the diatom,Tabellaria flocculosa, induced by very low concentrations of cadmium , 1981, Bulletin of environmental contamination and toxicology.

[66]  D. M. Nelson,et al.  Effects of copper and zinc on growth, morphology, and metabolism of Asterionella japonica (Cleve) 1 , 1981 .

[67]  P. Harrison,et al.  Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida , 1977 .

[68]  E. Paasche,et al.  An effect of osmotic pressure on the valve morphology of the diatom Skeletonema subsalsum (A. Cleve) Bethge , 1975 .

[69]  G. Hasle,et al.  Brackish-water and fresh-water species of the diatom genus Skeletonema Grev. I. Skeletonema subsalsum (A. Cleve) Bethge , 1975 .

[70]  T. Fan,et al.  Bio‐Inspired Bottom‐Up Assembly of Diatom‐Templated Ordered Porous Metal Chalcogenide Meso/Nanostructures , 2009 .

[71]  Debra K. Gale,et al.  Electron microscopy and optical characterization of cadmium sulphide nanocrystals deposited on the patterned surface of diatom biosilica , 2009 .

[72]  Luca De Stefano,et al.  Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa. , 2005, Journal of nanoscience and nanotechnology.

[73]  Mark Hildebrand,et al.  Prospects of manipulating diatom silica nanostructure. , 2005, Journal of nanoscience and nanotechnology.

[74]  R. Andersen,et al.  Algal culturing techniques , 2005 .

[75]  L. Stefano,et al.  Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa. , 2005 .

[76]  E. Torres,et al.  Effect of Cadmium on Growth, ATP Content, Carbon Fixation and Ultrastructure in the Marine Diatom Phaeodactylum tricornutum Bohlin , 2000 .

[77]  Y Summar,et al.  UV-induced changes in phytoplankton cells and its effects on grazers , 1997 .

[78]  D. Sparks,et al.  Methods of soil analysis. Part 3 - chemical methods. , 1996 .

[79]  S. Bates,et al.  TEMPERATURE EFFECTS ON GROWTH, DOMOIC ACID PRODUCTION, AND MORPHOLOGY OF THE DIATOM Nitzschia pungens f. multiseries , 1993 .

[80]  E. Stoermer,et al.  Effects of low level salinity concentrations on the growth of Cyclotella meneghinianaKütz. (Bacillariophyta) , 1984 .