Can GNSS contribute to improving the ITRF definition

Global Navigation Satellite Systems (GNSS) play a fundamental role in the elaboration of the International Terrestrial Reference Frame (ITRF). However, GNSS have so far not proven able to reliably determine the terrestrial scale nor the location of the Earth’s center of mass (geocenter) and have thus not contributed to defining the ITRF scale nor its origin. The weak ability of GNSS to determine the terrestrial scale apart from conventional satellite phase center offsets is well understood. On the other hand, their inability to reliably monitor geocenter motion was so far not clearly explained. We investigated this question from the perspective of collinearity among the parameters of a least-squares regression. A generalized collinearity diagnosis was therefore developed and allows handling several peculiarities of the GNSS geocenter determination problem. It revealed that the determination of all three components of geocenter motion with GNSS suffers from serious collinearity issues due to the simultaneous estimation of epoch-wise station and satellite clock offsets and of tropospheric parameters in global GNSS data analyses. Several prospects were finally investigated in view of a possible future contribution of GNSS to the definition of the ITRF scale and origin: the antenna calibration of at least one GNSS satellite, the time invariability of the satellite phase center offsets, the simultaneous analysis of GNSS data collected by ground stations and low Earth orbiting satellites, the modelling of ultra-stable satellite clocks and the mitigation of orbit modelling errors.