Constrained Regression for Interval-Valued Data
暂无分享,去创建一个
[1] Michael T. Owyang,et al. Multivariate Forecast Evaluation and Rationality Testing , 2007, Review of Economics and Statistics.
[2] Paulo M.M. Rodrigues,et al. Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns , 2011 .
[3] Javier Arroyo,et al. Forecasting with Interval and Histogram Data. Some Financial Applications , 2011 .
[4] Francisco de A. T. de Carvalho,et al. Constrained linear regression models for symbolic interval-valued variables , 2010, Comput. Stat. Data Anal..
[5] Andrew J. Patton,et al. Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White , 2009 .
[6] Francisco de A. T. de Carvalho,et al. Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..
[7] V. Chernozhukov,et al. QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.
[8] Edwin Diday,et al. Symbolic Data Analysis: Conceptual Statistics and Data Mining (Wiley Series in Computational Statistics) , 2007 .
[9] Paula Brito. Modelling and Analysing Interval Data , 2006, GfKl.
[10] Sílvia Gonçalves,et al. Bootstrap Standard Error Estimates for Linear Regression , 2005 .
[11] H. White,et al. Automatic Block-Length Selection for the Dependent Bootstrap , 2004 .
[12] L. Billard,et al. From the Statistics of Data to the Statistics of Knowledge , 2003 .
[13] Paul A. Ruud,et al. On the uniqueness of the maximum likelihood estimator , 2002 .
[14] George G. Judge,et al. Econometric foundations , 2000 .
[15] Christopher Winship,et al. Sample Selection Bias , 2000 .
[16] L. Billard,et al. Regression Analysis for Interval-Valued Data , 2000 .
[17] Edwin Diday,et al. Symbolic Data Analysis: A Mathematical Framework and Tool for Data Mining , 1999, Electron. Notes Discret. Math..
[18] Douglas G. Steigerwald,et al. Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models , 1997 .
[19] W. Newey,et al. Automatic Lag Selection in Covariance Matrix Estimation , 1994 .
[20] Halbert White,et al. Estimation, inference, and specification analysis , 1996 .
[21] William H. Greene,et al. Multiple roots of the Tobit log-likelihood , 1990 .
[22] C. Orme. A Note on the Uniqueness of the Maximum Likelihood Estimator in the Truncated Regression Model , 1989 .
[23] Jeffrey M. Wooldridge,et al. Some Invariance Principles and Central Limit Theorems for Dependent Heterogeneous Processes , 1988, Econometric Theory.
[24] W. Newey,et al. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .
[25] W. Newey,et al. Large sample estimation and hypothesis testing , 1986 .
[26] J. Heckman. Sample selection bias as a specification error , 1979 .
[27] B. Efron. Bootstrap Methods: Another Look at the Jackknife , 1979 .
[28] D. McLeish. Dependent Central Limit Theorems and Invariance Principles , 1974 .
[29] Takeshi Amemiya,et al. Regression Analysis when the Dependent Variable is Truncated Normal , 1973 .
[30] G. Baikunth Nath. MOMENTS OF A LINEARLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION1 , 1972 .
[31] R. Jennrich. Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .
[32] J. Tobin. Estimation of Relationships for Limited Dependent Variables , 1958 .