Strongly Vertex-Reinforced-Random-Walk on the complete graph

We study Vertex-Reinforced-Random-Walk on the complete graph with weights of the form $w(n)=n^\alpha$, with $\alpha>1$. Unlike for the Edge-Reinforced-Random-Walk, which in this case localizes a.s. on 2 sites, here we observe various phase transitions, and in particular localization on arbitrary large sets is possible, provided $\alpha$ is close enough to 1. Our proof relies on stochastic approximation techniques. At the end of the paper, we also prove a general result ensuring that any strongly reinforced VRRW on any bounded degree graph localizes a.s. on a finite subgraph.

[1]  Bruno Schapira,et al.  Localization on 4 sites for Vertex-reinforced random walks on $\mathbb Z$ , 2012, 1201.0658.

[2]  P. Tarres Localization of reinforced random walks , 2011, 1103.5536.

[3]  Michel Benaïm,et al.  A Class of Self-Interacting Processes with Applications to Games and Reinforced Random Walks , 2010, SIAM J. Control. Optim..

[4]  V. Limic,et al.  VRRW on complete-like graphs: Almost sure behavior , 2009, 0904.4722.

[5]  Pierre Tarres,et al.  Dynamic of vertwx-reinforced random walks. , 2008, 0809.2739.

[6]  Stanislav Volkov,et al.  Phase Transition in Vertex-Reinforced Random Walks on $${\mathbb{Z}}$$ with Non-linear Reinforcement , 2006 .

[7]  P. Tarres,et al.  Attracting edge and strongly edge reinforced walks , 2006, math/0604200.

[8]  Joel H. Spencer,et al.  Connectivity Transitions in Networks with Super-Linear Preferential Attachment , 2005, Internet Math..

[9]  P. Tarres Vertex-reinforced random walk on ℤ eventually gets stuck on five points , 2004, math/0410171.

[10]  F. Chung,et al.  Generalizations of Polya's urn Problem , 2003 .

[11]  V. Limic Attracting edge property for a class of reinforced random walks , 2003 .

[12]  S. Volkov Vertex-reinforced random walk on arbitrary graphs , 1999, math/9907196.

[13]  Stanislav Volkov,et al.  Vertex-reinforced random walk on Z has finite range , 1999 .

[14]  R. Pemantle,et al.  Vertex-reinforced random walk , 1992, math/0404041.

[15]  Stanislav Volkov,et al.  Phase transition in vertex-reinforced random walks on Z with non-linear reinforcement , 2006 .

[16]  Henrik Renlund,et al.  Reinforced Random Walk , 2005 .

[17]  M. Benaim,et al.  VERTEX-REINFORCED RANDOM WALKS AND A CONJECTURE OF PEMANTLE , 2002 .

[18]  M. Benaïm Dynamics of stochastic approximation algorithms , 1999 .