Cytoskeletal proteins and Golgi dynamics.

[1]  J. Lippincott-Schwartz,et al.  Retrograde Transport of Golgi-localized Proteins to the ER , 1998, The Journal of cell biology.

[2]  Noah Sciaky,et al.  Golgi Tubule Traffic and the Effects of Brefeldin A Visualized in Living Cells , 1997, The Journal of cell biology.

[3]  S A Kuznetsov,et al.  The interaction between cytoplasmic dynein and dynactin is required for fast axonal transport. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[4]  C. Echeverri,et al.  Overexpression of the Dynamitin (p50) Subunit of the Dynactin Complex Disrupts Dynein-dependent Maintenance of Membrane Organelle Distribution , 1997, The Journal of cell biology.

[5]  A. Minin,et al.  Dispersal of Golgi apparatus in nocodazole-treated fibroblasts is a kinesin-driven process. , 1997, Journal of cell science.

[6]  W. Almers,et al.  Targeting of green fluorescent protein to neuroendocrine secretory granules: a new tool for real time studies of regulated protein secretion. , 1997, European journal of cell biology.

[7]  Rainer Pepperkok,et al.  Visualization of ER-to-Golgi Transport in Living Cells Reveals a Sequential Mode of Action for COPII and COPI , 1997, Cell.

[8]  Jennifer Lippincott-Schwartz,et al.  ER-to-Golgi transport visualized in living cells , 1997, Nature.

[9]  S. Hammond,et al.  Phospholipase D Stimulates Release of Nascent Secretory Vesicles from the trans-Golgi Network , 1997, The Journal of cell biology.

[10]  E. Rodriguez-Boulan,et al.  Myosin II Is Involved in the Production of Constitutive Transport Vesicles from the TGN , 1997, The Journal of cell biology.

[11]  W. Balch,et al.  Membrane Dynamics at the Endoplasmic Reticulum–Golgi Interface , 1997, The Journal of cell biology.

[12]  C Kaether,et al.  Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. , 1997, Journal of cell science.

[13]  J. Buchanan,et al.  Golgi membrane skeleton: identification, localization and oligomerization of a 195 kDa ankyrin isoform associated with the Golgi complex. , 1997, Journal of cell science.

[14]  S. Karki,et al.  Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles , 1996, The Journal of cell biology.

[15]  E. Ikonen,et al.  Analysis of the role of p200-containing vesicles in post-Golgi traffic. , 1996, Molecular biology of the cell.

[16]  T. Schroer Structure and function of dynactin , 1996 .

[17]  M. Kashgarian,et al.  Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus , 1996, The Journal of cell biology.

[18]  J. McIntosh,et al.  Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles , 1996, The Journal of cell biology.

[19]  K. Beck,et al.  The spectrin-based membrane skeleton as a membrane protein-sorting machine. , 1996, The American journal of physiology.

[20]  J. Burkhardt In search of membrane receptors for microtubule-based motors - is kinectin a kinesin receptor? , 1996, Trends in cell biology.

[21]  J. Lippincott-Schwartz,et al.  Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. , 1996, Molecular biology of the cell.

[22]  K. Boekelheide,et al.  Kinesin localizes to the trans-Golgi network regardless of microtubule organization. , 1996, European journal of cell biology.

[23]  C. Echeverri,et al.  Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis , 1996, The Journal of cell biology.

[24]  R. Vallee,et al.  Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued , 1995, The Journal of cell biology.

[25]  M. Sheetz,et al.  Kinectin, an essential anchor for kinesin-driven vesicle motility. , 1995, Science.

[26]  C. Waterman-Storer,et al.  The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Lippincott-Schwartz,et al.  Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic [published errata appear in J Cell Biol 1995 Mar;128(5):following 988 and 1995 May;129(3):893] , 1995, The Journal of cell biology.

[28]  J. Buchanan,et al.  Golgi spectrin: identification of an erythroid beta-spectrin homolog associated with the Golgi complex , 1994, The Journal of cell biology.

[29]  M. McNiven,et al.  Association of kinesin with the Golgi apparatus in rat hepatocytes. , 1994, Journal of cell science.

[30]  J. Cooper,et al.  Ultrastructural analysis of the dynactin complex: an actin-related protein is a component of a filament that resembles F-actin , 1994, The Journal of cell biology.

[31]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[32]  R. Vallee,et al.  Characterization of a 50-kDa polypeptide in cytoplasmic dynein preparations reveals a complex with p150GLUED and a novel actin. , 1993, The Journal of biological chemistry.

[33]  P. Hollenbeck,et al.  Phosphorylation of Neuronal Kinesin Heavy and Light Chains In Vivo , 1993, Journal of neurochemistry.

[34]  R. Miller,et al.  Calmodulin binding to and cAMP-dependent phosphorylation of kinesin light chains modulate kinesin ATPase activity. , 1993, The Journal of biological chemistry.

[35]  J. Lippincott-Schwartz Bidirectional membrane traffic between the endoplasmic reticulum and Golgi apparatus. , 1993, Trends in cell biology.

[36]  E. Kuismanen,et al.  Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex , 1992, Seminars in Cell Biology.

[37]  I. Mellman,et al.  The Golgi complex: In vitro veritas? , 1992, Cell.

[38]  J. Lippincott-Schwartz,et al.  Brefeldin A: insights into the control of membrane traffic and organelle structure , 1992, The Journal of cell biology.

[39]  H. Pelham,et al.  Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum , 1992, Cell.

[40]  J. Saraste,et al.  Distribution of the intermediate elements operating in ER to Golgi transport. , 1991, Journal of cell science.

[41]  H. Pelham Recycling of proteins between the endoplasmic reticulum and Golgi complex. , 1991, Current opinion in cell biology.

[42]  E. Berger,et al.  Reclustering of scattered Golgi elements occurs along microtubules. , 1989, European journal of cell biology.

[43]  H. Hauri,et al.  Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus , 1988, The Journal of cell biology.

[44]  D. Taylor,et al.  Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[45]  K. Fujiwara,et al.  Microtubules and the endoplasmic reticulum are highly interdependent structures , 1986, The Journal of cell biology.

[46]  J. Thyberg,et al.  Microtubules and the organization of the Golgi complex. , 1985, Experimental cell research.

[47]  S. Singer,et al.  Associations of elements of the Golgi apparatus with microtubules , 1984, The Journal of cell biology.

[48]  M. L. Melton,et al.  The fine structure and reproduction of Toxoplasma gondii. , 1968, The Journal of parasitology.

[49]  F. Plum Handbook of Physiology. , 1960 .

[50]  P. Devarajan,et al.  Chapter 6 The Spectrin Cytoskeleton and Organization of Polarized Epithelial Cell Membranes , 1996 .

[51]  J. Lippincott-Schwartz,et al.  Organization of organelles and membrane traffic by microtubules. , 1995, Current opinion in cell biology.

[52]  R. Vallee,et al.  DYNEINS: molecular structure and cellular function. , 1994, Annual review of cell biology.

[53]  D. Gilligan,et al.  The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. , 1993, Annual review of cell biology.

[54]  M. Mooseker,et al.  Ordering the membrane-cytoskeleton trilayer , 1991 .

[55]  J. Bergmann,et al.  Using temperature-sensitive mutants of VSV to study membrane protein biogenesis. , 1989, Methods in cell biology.