The technique of the exponential change of measure for Markov processes

is a true martingale for a positive function h 2 D(A). We demonstrate that the process X (t) is a Markov process on the probability space (U, F , fF tg, ~ P), we find its extended generator ~ A and provide sufficient conditions under which D(~ A) 1⁄4 D(A). We apply this result to continuous-time Markov chains, to piecewise deterministic Markov processes and to diffusion processes (in this case a special choice of h yields the classical Cameron–Martin–Girsanov theorem).

[1]  Jean Walrand,et al.  Some Large Deviations Results in Markov Fluid Models , 1992 .

[2]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[3]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[4]  Offer Kella,et al.  A multi-dimensional martingale for Markov additive processes and its applications , 2000, Advances in Applied Probability.

[5]  J. Doob Classical potential theory and its probabilistic counterpart , 1984 .

[6]  Hanspeter Schmidli Lundberg inequalities for a cox model with a piecewise constant intensity , 1996 .

[7]  Ad Ridder Fast simulation of Markov fluid models , 1993 .

[8]  Jean Jacod,et al.  Semimartingales and Markov processes , 1980 .

[9]  Kiyosi Itô,et al.  Transformation of Markov processes by multiplicative functionals , 1965 .

[10]  Zbigniew Palmowski,et al.  The superposition of alternating on-off flows and a fluid model , 1998 .

[11]  An extension to the renewal theorem and an application to risk theory , 1997 .

[12]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[13]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[14]  Vidyadhar G. Kulkarni,et al.  Fluid Model Driven by an Ornstein-Uhlenbeck Process , 1994, Probability in the Engineering and Informational Sciences.

[15]  M. Sørensen,et al.  Exponential Families of Stochastic Processes , 1997 .

[16]  T. Rolski Stochastic Processes for Insurance and Finance , 1999 .

[17]  H. Kunita,et al.  NOTES ON TRANSFORMATIONS OF MARKOV PROCESSES CONNECTED WITH MULTIPLICATIVE FUNCTIONALS , 1963 .

[18]  Tomasz Rolski,et al.  Stochastic Processes for Insurance and Finance , 2001 .

[19]  Hanspeter Schmidli Estimation of the Lundberg coefficient for a Markov modulated risk model , 1997 .

[20]  Z. Palmowski Lundberg inequalities in a diffusion environment , 2002 .

[21]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[22]  P. Protter Stochastic integration and differential equations , 1990 .

[23]  Vidyadhar G. Kulkarni,et al.  BOUNDS FOR FLUID MODELS DRIVEN BY SEMI-MARKOV INPUTS , 1999 .

[24]  Paul Embrechts,et al.  Martingales and insurance risk , 1989 .

[25]  Zbigniew Palmowski,et al.  A note on martingale inequalities for fluid models , 1996 .

[26]  S. Asmussen BUSY PERIOD ANALYSIS, RARE EVENTS AND TRANSIENT BEHAVIOR IN FLUID FLOW MODELS , 1994 .

[27]  Cramér-Lundberg approximations for ruin probabilities of risk processes perturbed by diffusion , 1995 .

[28]  Mark H. Davis Markov Models and Optimization , 1995 .

[29]  Stewart N. Ethier,et al.  Fleming-Viot processes in population genetics , 1993 .

[30]  J. Jacod,et al.  Caractéristiques locales et conditions de continuité absolue pour les semi-martingales , 1976 .

[31]  P. Protter Stochastic integration and differential equations : a new approach , 1990 .

[32]  S. Asmussen Stationary distributions for fluid flow models with or without Brownian noise , 1995 .

[33]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[34]  Hiroshi Kunita,et al.  Absolute Continuity of Markov Processes and Generators , 1969, Nagoya Mathematical Journal.

[35]  M. Yor DIFFUSIONS, MARKOV PROCESSES AND MARTINGALES: Volume 2: Itô Calculus , 1989 .

[36]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .