Regulatory and metabolic network of rhamnolipid biosynthesis: Traditional and advanced engineering towards biotechnological production

During the last decade, the demand for economical and sustainable bioprocesses replacing petrochemical-derived products has significantly increased. Rhamnolipids are interesting biosurfactants that might possess a broad industrial application range. However, despite of 60 years of research in the area of rhamnolipid production, the economic feasibility of these glycolipids is pending. Although the biosynthesis and regulatory network are in a big part known, the actual incidents on the cellular and process level during bioreactor cultivation are not mastered. Traditional engineering by random and targeted genetic alteration, process design, and recombinant strategies did not succeed by now. For enhanced process development, there is an urgent need of in-depth information about the rhamnolipid production regulation during bioreactor cultivation to design knowledge-based genetic and process engineering strategies. Rhamnolipids are structurally comparable, simple secondary metabolites and thus have the potential to become instrumental in future secondary metabolite engineering by systems biotechnology. This review summarizes current knowledge about the regulatory and metabolic network of rhamnolipid synthesis and discusses traditional and advanced engineering strategies performed for rhamnolipid production improvement focusing on Pseudomonas aeruginosa. Finally, the opportunities of applying the systems biotechnology toolbox on the whole-cell biocatalyst and bioprocess level for further rhamnolipid production optimization are discussed.

[1]  O. Käppeli,et al.  Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa , 1986, Applied and environmental microbiology.

[2]  R. Brent,et al.  Modelling cellular behaviour , 2001, Nature.

[3]  M. Matsufuji,et al.  High production of rhamnolipids by Pseudomonas aeruginosagrowing on ethanol , 1997, Biotechnology Letters.

[4]  F. G. Jarvis,et al.  A Glyco-lipide Produced by Pseudomonas Aeruginosa , 1949 .

[5]  E. Greenberg,et al.  Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Markus Michael Müller,et al.  Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874 , 2011, Applied Microbiology and Biotechnology.

[7]  C. Reimmann,et al.  The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N‐butyryl‐homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase , 1997, Molecular microbiology.

[8]  Vicelma Luiz Cardoso,et al.  Enhancement of Rhamnolipid Production in Residual Soybean Oil by an Isolated Strain of Pseudomonas aeruginosa , 2007 .

[9]  É. Potvin,et al.  Sigma factors in Pseudomonas aeruginosa. , 2008, FEMS microbiology reviews.

[10]  C. Mulligan,et al.  Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa , 1989, Applied and environmental microbiology.

[11]  J. Lam,et al.  Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. , 2009, Microbiology.

[12]  Guido Dieterich,et al.  RhlR Expression in Pseudomonas aeruginosa Is Modulated by the Pseudomonas Quinolone Signal via PhoB-Dependent and -Independent Pathways , 2006, Journal of bacteriology.

[13]  Ju Chu,et al.  From multi-scale methodology to systems biology: to integrate strain improvement and fermentation optimization , 2006 .

[14]  J. Contiero,et al.  Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa , 2009, Journal of Industrial Microbiology & Biotechnology.

[15]  S. Leibler,et al.  Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments , 2005, Science.

[16]  Fumiaki Katagiri,et al.  Attacking Complex Problems with the Power of Systems Biology , 2003, Plant Physiology.

[17]  C. Olvera,et al.  Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di‐rhamnolipid biosynthesis , 2001, Molecular microbiology.

[18]  Markus Michael Müller,et al.  Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems , 2010, Applied Microbiology and Biotechnology.

[19]  N. Karanth,et al.  Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR‐6 under submerged conditions , 2007 .

[20]  K. Novak The complete genome sequence… , 1998, Nature Medicine.

[21]  M. Cha,et al.  Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. , 2008, Bioresource technology.

[22]  R. Miller,et al.  Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant) , 1992, Applied and environmental microbiology.

[23]  D. Freire,et al.  Effects of carbon and nitrogen sources on the proteome of Pseudomonas aeruginosa PA1 during rhamnolipid production. , 2010 .

[24]  Lars M. Blank,et al.  Metabolic flux distributions: genetic information, computational predictions, and experimental validation , 2010, Applied Microbiology and Biotechnology.

[25]  B. Robertson,et al.  The identification of cryptic rhamnose biosynthesis genes in Neisseria gonorrhoeae and their relationship to lipopolysaccharide biosynthesis , 1994, Journal of bacteriology.

[26]  A. Amirul,et al.  Different feeding strategy for the production of biosurfactant from Pseudomonas aeruginosa USM AR2 in modified bioreactor , 2009 .

[27]  U. Sauer,et al.  Article number: 62 REVIEW Metabolic networks in motion: 13 C-based flux analysis , 2022 .

[28]  M. Infante,et al.  Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. , 2003, Biotechnology and bioengineering.

[29]  G. Stephanopoulos,et al.  Engineering Yeast Transcription Machinery for Improved Ethanol Tolerance and Production , 2006, Science.

[30]  F. Rombouts,et al.  Modeling of the Bacterial Growth Curve , 1990, Applied and environmental microbiology.

[31]  C. Clément,et al.  Rhamnolipid Biosurfactants as New Players in Animal and Plant Defense against Microbes , 2010, International journal of molecular sciences.

[32]  Gloria Soberón-Chávez,et al.  Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host , 2006, Applied Microbiology and Biotechnology.

[33]  A Fiechter,et al.  Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source , 1984, Applied and Environmental Microbiology.

[34]  P. Grunwald Carbohydrate-Modifying Biocatalysts , 2011 .

[35]  F. Lépine,et al.  Production of rhamnolipids by Pseudomonas aeruginosa , 2005, Applied Microbiology and Biotechnology.

[36]  Christoph Syldatk,et al.  Rhamnolipid production by Burkholderia plantarii DSM 9509T , 2010 .

[37]  Julien Tremblay,et al.  Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. , 2007, Environmental microbiology.

[38]  Jo‐Shu Chang,et al.  Improved Production of Biosurfactant with Newly Isolated Pseudomonas aeruginosa S2 , 2008, Biotechnology progress.

[39]  Christoph Syldatk,et al.  Chemical and Physical Characterization of Four Interfacial-Active Rhamnolipids from Pseudomonas spec. DSM 2874 Grown on n-Alkanes , 1985, Zeitschrift fur Naturforschung. Section C, Biosciences.

[40]  C. Mulligan,et al.  Biosurfactant production by a chloramphenicol tolerant strain of Pseudomonas aeruginosa , 1989 .

[41]  J. Guinea,et al.  Kinetic studies on surfactant production byPseudomonas aeruginosa 44T1 , 1991, Journal of Industrial Microbiology.

[42]  A. M. Solanas,et al.  Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045 : Effect of culture conditions , 2005 .

[43]  A Fiechter,et al.  Production of Pseudomonas aeruginosa Rhamnolipid Biosurfactants in Heterologous Hosts , 1995, Applied and environmental microbiology.

[44]  Sven Panke,et al.  Engineering in complex systems. , 2010, Current opinion in biotechnology.

[45]  M. Parsek,et al.  Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production , 2009, Molecular microbiology.

[46]  O. Ward,et al.  Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1 , 1997, Journal of Industrial Microbiology and Biotechnology.

[47]  R. Tompkins,et al.  Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Steinbüchel,et al.  Role of Fatty Acid De Novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis inEscherichia coli , 2001, Applied and Environmental Microbiology.

[49]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[50]  J. Campos-García,et al.  The Pseudomonas aeruginosa rhlG Gene Encodes an NADPH-Dependent β-Ketoacyl Reductase Which Is Specifically Involved in Rhamnolipid Synthesis , 1998, Journal of bacteriology.

[51]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[52]  Walter M. van Gulik,et al.  Fast sampling for quantitative microbial metabolomics. , 2010 .

[53]  A. Brooks,et al.  Microarray Analysis of Pseudomonas aeruginosa Quorum-Sensing Regulons: Effects of Growth Phase and Environment , 2003, Journal of bacteriology.

[54]  L. Ju,et al.  Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. , 2001, Biotechnology and bioengineering.

[55]  C. Rock,et al.  RhlA Converts β-Hydroxyacyl-Acyl Carrier Protein Intermediates in Fatty Acid Synthesis to the β-Hydroxydecanoyl-β-Hydroxydecanoate Component of Rhamnolipids in Pseudomonas aeruginosa , 2008, Journal of bacteriology.

[56]  W. Goddard,et al.  Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery , 2007, Biotechnology and bioengineering.

[57]  R. Maier,et al.  Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications , 2000, Applied Microbiology and Biotechnology.

[58]  Donald E Woods,et al.  Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids , 2009, BMC Microbiology.

[59]  Dieter Jahn,et al.  SYSTOMONAS — an integrated database for systems biology analysis of Pseudomonas , 2007, Nucleic Acids Res..

[60]  D. Schomburg,et al.  How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. , 2010, Environmental microbiology.

[61]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[62]  A. Steinbüchel,et al.  A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. , 1998, The Journal of biological chemistry.

[63]  Jo‐Shu Chang,et al.  Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater , 2005 .

[64]  Julien Tremblay,et al.  Increase in Rhamnolipid Synthesis under Iron-Limiting Conditions Influences Surface Motility and Biofilm Formation in Pseudomonas aeruginosa , 2010, Journal of bacteriology.

[65]  Sang Yup Lee,et al.  The Escherichia coli Proteome: Past, Present, and Future Prospects , 2006, Microbiology and Molecular Biology Reviews.

[66]  J. Goldberg,et al.  The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. , 1999, FEMS microbiology letters.

[67]  I. Hwang,et al.  Proteomic analysis of quorum sensing-dependent proteins in Burkholderia glumae. , 2010, Journal of proteome research.

[68]  A. S. Bal,et al.  Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes , 1996, Biotechnology Letters.

[69]  H. Schweizer,et al.  Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB) , 1997, Journal of bacteriology.

[70]  Dirk Weuster-Botz,et al.  Parallel reactor systems for bioprocess development. , 2005, Advances in biochemical engineering/biotechnology.

[71]  I. Banat,et al.  Microbial biosurfactants production, applications and future potential , 2010, Applied Microbiology and Biotechnology.

[72]  M. Parsek,et al.  A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa , 2010, Proceedings of the National Academy of Sciences.

[73]  H. Unno,et al.  Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa , 2008, Applied Microbiology and Biotechnology.

[74]  F. Lépine,et al.  Rhamnolipids: diversity of structures, microbial origins and roles , 2010, Applied Microbiology and Biotechnology.

[75]  Jo‐Shu Chang,et al.  Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. , 2008, Bioresource technology.

[76]  Sunwon Park,et al.  Control of fed-batch fermentations. , 1999, Biotechnology advances.

[77]  I. Banat,et al.  Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. , 2002, Bioresource technology.

[78]  P. H. Roy,et al.  Complete Genome Sequence of the Multiresistant Taxonomic Outlier Pseudomonas aeruginosa PA7 , 2010, PloS one.

[79]  M. Karnovsky,et al.  Rhamnose and rhamnolipide biosynthesis by Pseudomonas aeruginosa. , 1957, The Journal of biological chemistry.

[80]  Sang Yup Lee,et al.  Systems biotechnology for strain improvement. , 2005, Trends in biotechnology.

[81]  Udo Kragl,et al.  Technology transfer in biotechnology : from lab to industry to production , 2005 .

[82]  B. Iglewski,et al.  Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa. , 2004, Vaccine.

[83]  B. Iglewski,et al.  Starvation Selection Restores Elastase and Rhamnolipid Production in a Pseudomonas aeruginosaQuorum-Sensing Mutant , 1998, Infection and Immunity.

[84]  J. Nielsen,et al.  Industrial systems biology. , 2010, Biotechnology and bioengineering.

[85]  L. Daniels,et al.  Microbially produced rhamnolipid as a source of rhamnose. , 1989, Biotechnology and bioengineering.

[86]  J. Mattick,et al.  Proteome analysis of extracellular proteins regulated by the las and rhl quorum sensing systems in Pseudomonas aeruginosa PAO1. , 2003, Microbiology.

[87]  J. Reiser,et al.  Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. , 1994, The Journal of biological chemistry.

[88]  R. Hausmann,et al.  Rhamnolipids: Detection, Analysis, Biosynthesis, Genetic Regulation, and Bioengineering of Production , 2011 .

[89]  C. Syldatk,et al.  An integrated microbial/enzymatic process for production of rhamnolipids and L‐(+)‐rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874 , 2003 .

[90]  Jae-Hyuk Jang,et al.  Rhamnolipid production in batch and fed-batch fermentation usingPseudomonas aeruginosa BYK-2 KCTC 18012P , 2004 .

[91]  O. Käppeli,et al.  Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors , 1986, Applied Microbiology and Biotechnology.

[92]  G. O’Toole,et al.  Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[93]  E. Greenberg,et al.  Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon , 2007, BMC Genomics.

[94]  A. Fiechter,et al.  Production of rhamnolipid biosurfactants. , 1995, Advances in biochemical engineering/biotechnology.

[95]  L. Glaser,et al.  THE ENZYMATIC SYNTHESIS OF A RHAMNOSE-CONTAINING GLYCOLIPID BY EXTRACTS OF PSEUDOMONAS AERUGINOSA. , 1963, The Journal of biological chemistry.

[96]  Weiwen Zhang,et al.  Integrating multiple 'omics' analysis for microbial biology: application and methodologies. , 2010, Microbiology.

[97]  F. Lépine,et al.  rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. , 2003, Microbiology.

[98]  Kosaric Biosurfactants and Biotechnology , 1987 .

[99]  Yonghong Wang,et al.  Industrial bioprocess control and optimization in the context of systems biotechnology. , 2009, Biotechnology advances.

[100]  E. R. Sullivan,et al.  Molecular genetics of biosurfactant production , 1998, Current opinion in biotechnology.

[101]  M Kennedy,et al.  Strategies for improving fermentation medium performance: a review , 1999, Journal of Industrial Microbiology and Biotechnology.

[102]  L. Burrows,et al.  Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. , 2000, Microbiology.

[103]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[104]  A. Malpertuy,et al.  Comparative analysis of missing value imputation methods to improve clustering and interpretation of microarray experiments , 2010, BMC Genomics.

[105]  G. Stephanopoulos,et al.  Exploiting biological complexity for strain improvement through systems biology , 2004, Nature Biotechnology.

[106]  R. Marchal,et al.  Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species , 1996, Applied Microbiology and Biotechnology.

[107]  Fuensanta Máximo,et al.  Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10 , 2002 .

[108]  Daniel Kuhn,et al.  Systems biotechnology – Rational whole‐cell biocatalyst and bioprocess design , 2010 .

[109]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[110]  B. Iglewski,et al.  Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes , 1997, Journal of bacteriology.

[111]  B. Rehm,et al.  Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads , 2005, Biotechnology Letters.

[112]  Wei-Shou Hu,et al.  Fedbatch culture and dynamic nutrient feeding. , 2006, Advances in biochemical engineering/biotechnology.

[113]  S. C. Yoon,et al.  Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants. , 2010, Journal of biotechnology.

[114]  C. Mulligan,et al.  The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa , 1989 .

[115]  M. Boxus,et al.  Bioreactor mixing efficiency modulates the activity of a prpoS : : GFP reporter gene in E . coli , 2009 .

[116]  M. P. Bosch,et al.  Effect of the carbon source on biosurfactant production byPseudomonas aeruginosa 44T1 , 1989, Biotechnology Letters.

[117]  R. Maxwell,et al.  NMR metabolomics of planktonic and biofilm modes of growth in Pseudomonas aeruginosa. , 2007, Analytical chemistry.

[118]  M. Vasil,et al.  GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes , 2002, Molecular microbiology.

[119]  M. Karnovsky,et al.  Studies on the biosynthesis of L-rhammose. , 1958, The Journal of biological chemistry.

[120]  D. Sabatini,et al.  Rhamnolipid biosurfactant mixtures for environmental remediation. , 2008, Water research.

[121]  Raymond Lo,et al.  Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes , 2008, Nucleic Acids Res..

[122]  K. Juárez,et al.  Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. , 2003, Microbiology.

[123]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO 1 , an opportunistic pathogen , 2000 .

[124]  J. Reiser,et al.  Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[125]  张国亮,et al.  Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids , 2005 .

[126]  A Fiechter,et al.  Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa , 1994, Journal of bacteriology.

[127]  S. Worgall,et al.  Transcriptome analysis of the Pseudomonas aeruginosa response to iron , 2003, Archives of Microbiology.

[128]  Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. , 1999, Journal of bacteriology.

[129]  A. Aristidou,et al.  Metabolic Engineering in the -omics Era: Elucidating and Modulating Regulatory Networks , 2005, Microbiology and Molecular Biology Reviews.

[130]  A. Escalante,et al.  Rhamnolipids: Production in bacteria other than Pseudomonas aeruginosa , 2010 .

[131]  Miquel Casals,et al.  Physicochemical and Antimicrobial Properties of New Rhamnolipids Produced by Pseudomonas aeruginosa AT10 from Soybean Oil Refinery Wastes , 2001 .

[132]  B. Holloway Genetic recombination in Pseudomonas aeruginosa. , 1955, Journal of general microbiology.

[133]  J. Tremblay,et al.  Gene expression in Pseudomonas aeruginosa swarming motility , 2010, BMC Genomics.

[134]  B. Rehm,et al.  The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. , 2004, Microbiology.

[135]  Markus J. Herrgård,et al.  Reconstruction of microbial transcriptional regulatory networks. , 2004, Current opinion in biotechnology.

[136]  C. Syldatk,et al.  Production of Four Interfacial Active Rhamnolipids from n-Alkanes or Glycerol by Resting Cells of Pseudomonas species DSM 2874 , 1985, Zeitschrift fur Naturforschung. Section C, Biosciences.

[137]  P. Silver,et al.  Molecular Systems Biology in Drug Development , 2007, Clinical pharmacology and therapeutics.

[138]  N. Karanth,et al.  A mathematical model for the production of biosurfactants by Pseudomonas aeuginosa CFTR‐6: Production of biomass , 2007 .

[139]  F. Lépine,et al.  Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy) alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. , 2001, Journal of mass spectrometry : JMS.

[140]  C. Rock,et al.  Structure of RhlG, an Essential β-Ketoacyl Reductase in the Rhamnolipid Biosynthetic Pathway of Pseudomonas aeruginosa* , 2006, Journal of Biological Chemistry.

[141]  John M Woodley,et al.  New opportunities for biocatalysis: making pharmaceutical processes greener. , 2008, Trends in biotechnology.

[142]  V. Wray,et al.  Biosynthetic Pathway of Pseudomonas aeruginosa 4-Hydroxy-2-Alkylquinolines , 2005, Journal of bacteriology.

[143]  S. E. West,et al.  Vfr controls quorum sensing in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[144]  O. Fiehn Metabolomics – the link between genotypes and phenotypes , 2004, Plant Molecular Biology.

[145]  W. Duetz,et al.  Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. , 2007, Trends in microbiology.

[146]  Jo‐Shu Chang,et al.  Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2 , 2007, Applied Microbiology and Biotechnology.