On the neural origin of pseudoneglect: EEG-correlates of shifts in line bisection performance with manipulation of line length☆

Healthy participants tend to show systematic biases in spatial attention, usually to the left. However, these biases can shift rightward as a result of a number of experimental manipulations. Using electroencephalography (EEG) and a computerized line bisection task, here we investigated for the first time the neural correlates of changes in spatial attention bias induced by line-length (the so-called line-length effect). In accordance with previous studies, an overall systematic left bias (pseudoneglect) was present during long line but not during short line bisection performance. This effect of line-length on behavioral bias was associated with stronger right parieto-occipital responses to long as compared to short lines in an early time window (100–200 ms) post-stimulus onset. This early differential activation to long as compared to short lines was task-independent (present even in a non-spatial control task not requiring line bisection), suggesting that it reflects a reflexive attentional response to long lines. This was corroborated by further analyses source-localizing the line-length effect to the right temporo-parietal junction (TPJ) and revealing a positive correlation between the strength of this effect and the magnitude by which long lines (relative to short lines) drive a behavioral left bias across individuals. Therefore, stimulus-driven left bisection bias was associated with increased right hemispheric engagement of areas of the ventral attention network. This further substantiates that this network plays a key role in the genesis of spatial bias, and suggests that post-stimulus TPJ-activity at early information processing stages (around the latency of the N1 component) contributes to the left bias.

[1]  V. Candas,et al.  Time-on-task effect in pseudoneglect , 2006, Experimental Brain Research.

[2]  L. Rueckert,et al.  Pseudoneglect and the cross-over effect , 2002, Neuropsychologia.

[3]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[4]  A. Davies,et al.  Putting attention on the line: Investigating the activation–orientation hypothesis of pseudoneglect , 2006, Neuropsychologia.

[5]  Georg Kerkhoff,et al.  Spatial hemineglect in humans , 2001, Progress in Neurobiology.

[6]  Daniel C. Javitt,et al.  Right hemisphere control of visuospatial attention: line-bisection judgments evaluated with high-density electrical mapping and source analysis☆ , 2003, NeuroImage.

[7]  Dana Schneider,et al.  Attentional load asymmetrically affects early electrophysiological indices of visual orienting. , 2011, Cerebral cortex.

[8]  Joseph Krummenacher,et al.  The influence of alertness on spatial and nonspatial components of visual attention. , 2010, Journal of experimental psychology. Human perception and performance.

[9]  A. Milner,et al.  To halve and to halve not: An analysis of line bisection judgements in normal subjects , 1992, Neuropsychologia.

[10]  Á. Pascual-Leone,et al.  α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.

[11]  Manuel Schabus,et al.  A shift of visual spatial attention is selectively associated with human EEG alpha activity , 2005, The European journal of neuroscience.

[12]  C. Michel,et al.  Noninvasive Localization of Electromagnetic Epileptic Activity. II. Demonstration of Sublobar Accuracy in Patients with Simultaneous Surface and Depth Recordings , 2004, Brain Topography.

[13]  M. McCourt Performance consistency of normal observers in forced-choice tachistoscopic visual line bisection , 2001, Neuropsychologia.

[14]  K. Heilman,et al.  Pseudoneglect: Effects of hemispace on a tactile line bisection task , 1980, Neuropsychologia.

[15]  C. Dodds,et al.  Rightward shift in spatial awareness with declining alertness , 2005, Neuropsychologia.

[16]  S. Hillyard,et al.  Cortical sources of the early components of the visual evoked potential , 2002, Human brain mapping.

[17]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[18]  E. Bisiach,et al.  Timing of right parietal and frontal cortex activity in visuo-spatial perception: a TMS study in normal individuals , 2001, Neuroreport.

[19]  John J. Foxe,et al.  Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. , 2006, Journal of neurophysiology.

[20]  Terrence J. Sejnowski,et al.  Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis , 2007, NeuroImage.

[21]  Daniel P. Newman,et al.  Linking time-on-task, spatial bias and hemispheric activation asymmetry: A neural correlate of rightward attention drift , 2013, Neuropsychologia.

[22]  H. Duffau,et al.  Direct Evidence for a Parietal-Frontal Pathway Subserving Spatial Awareness in Humans , 2005, Science.

[23]  K. Heilman,et al.  Right hemisphere dominance for attention , 1980, Neurology.

[24]  R. Mayeux,et al.  Hemispatial neglect , 1989, Neurology.

[25]  Michael E. R. Nicholls,et al.  Central fixations with rightward deviations: saccadic eye movements on the landmark task , 2012, Experimental Brain Research.

[26]  Mark E. McCourt,et al.  Biases of spatial attention in vision and audition , 2010, Brain and Cognition.

[27]  Monika Harvey,et al.  Visuospatial neglect in action , 2012, Neuropsychologia.

[28]  J. Mattingley,et al.  Parietal neglect and visual awareness , 1998, Nature Neuroscience.

[29]  K. Willmes,et al.  The effect of low arousal on visuo-spatial attention , 2006, Neuropsychologia.

[30]  Christoph M. Michel,et al.  Spatiotemporal Analysis of Multichannel EEG: CARTOOL , 2011, Comput. Intell. Neurosci..

[31]  Gereon R. Fink,et al.  Timing of visuo-spatial information processing: Electrical source imaging related to line bisection judgements , 2008, Neuropsychologia.

[32]  E. Vogel,et al.  The visual N1 component as an index of a discrimination process. , 2000, Psychophysiology.

[33]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[34]  Marco Zorzi,et al.  Increased attentional demands impair contralesional space awareness following stroke , 2010, Neuropsychologia.

[35]  Matthias Niemeier,et al.  Spatial frequency-specific effects on the attentional bias: Evidence for two attentional systems , 2011, Cortex.

[36]  Winfried Schlee,et al.  Top-Down Modulation of the Auditory Steady-State Response in a Task-Switch Paradigm , 2008, Front. Hum. Neurosci..

[37]  J. Duncan,et al.  The effects of time-on-task and concurrent cognitive load on normal visuospatial bias. , 2008, Neuropsychology.

[38]  H. Karnath,et al.  The anatomy of spatial neglect , 2012, Neuropsychologia.

[39]  M. Corbetta,et al.  Neural basis and recovery of spatial attention deficits in spatial neglect , 2005, Nature Neuroscience.

[40]  B. Anderson,et al.  A mathematical model of line bisection behaviour in neglect. , 1996, Brain : a journal of neurology.

[41]  BrunetDenis,et al.  Spatiotemporal analysis of multichannel EEG , 2011 .

[42]  J. Mattingley,et al.  Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness , 1998, Nature.

[43]  John Suckling,et al.  Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[44]  S. Gonzalez-Andino,et al.  [The biophysical foundations of the localisation of encephalogram generators in the brain. The application of a distribution-type model to the localisation of epileptic foci]. , 2004, Revista de neurologia.

[45]  G. Woodman,et al.  Event-related potential studies of attention , 2000, Trends in Cognitive Sciences.

[46]  Gereon R Fink,et al.  ‘Where’ depends on ‘what’: A differential functional anatomy for position discrimination in one- versus two-dimensions , 2000, Neuropsychologia.

[47]  Mark Mennemeier,et al.  Biases in Attentional Orientation and Magnitude Estimation Explain Crossover: Neglect is a Disorder of Both , 2005, Journal of Cognitive Neuroscience.

[48]  John J. Foxe,et al.  Visual object processing as a function of stimulus energy, retinal eccentricity and Gestalt configuration: A high-density electrical mapping study , 2012, Neuroscience.

[49]  M. McCourt,et al.  Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks , 2000, Neuropsychologia.

[50]  B Anderson,et al.  Pieces of the true crossover effect in neglect , 1997, Neurology.

[51]  K. Zilles,et al.  The Neural Basis of Vertical and Horizontal Line Bisection Judgments: An fMRI Study of Normal Volunteers , 2001, NeuroImage.

[52]  M. Bellgrove,et al.  Attenuation of spatial attentional asymmetries with poor sustained attention , 2004, Neuroreport.

[53]  A. Chatterjee,et al.  Context and crossover in unilateral neglect , 2001, Neuropsychologia.

[54]  Ingo G. Meister,et al.  Interhemispheric imbalance during visuospatial attention investigated by unilateral and bilateral TMS over human parietal cortices , 2006, Brain Research.

[55]  K. Zilles,et al.  Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI , 2000, Neurology.

[56]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[57]  M. Moscovitch,et al.  Hemispheric control of spatial attention , 1990, Brain and Cognition.

[58]  Mark E. McCourt,et al.  Visuospatial attention in line bisection: stimulusmodulation of pseudoneglect , 1999, Neuropsychologia.

[59]  James S. P. Macdonald,et al.  Trial-by-Trial Variations in Subjective Attentional State are Reflected in Ongoing Prestimulus EEG Alpha Oscillations , 2011, Front. Psychology.

[60]  Heikki Hämäläinen,et al.  Alterations in visual and auditory processing in hemispatial neglect: an evoked potential follow-up study. , 2011, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[61]  John J. Foxe,et al.  Parvocellular and Magnocellular Contributions to the Initial Generators of the Visual Evoked Potential: High-Density Electrical Mapping of the “C1” Component , 2008, Brain Topography.

[62]  Peter McGeorge,et al.  Hemispatial asymmetries in judgment of stimulus size , 2007, Perception & psychophysics.

[63]  R. Shillcock,et al.  The cross-over effect in unilateral neglect. Modelling detailed data in the line-bisection task. , 1998, Brain : a journal of neurology.

[64]  Daniel Voyer,et al.  Free-viewing laterality tasks: a multilevel meta-analysis. , 2012, Neuropsychology.

[65]  John J. Foxe,et al.  The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention , 2011, Front. Psychology.

[66]  David M. Groppe,et al.  Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. , 2011, Psychophysiology.

[67]  Alejandro Pérez,et al.  Rightward shift in temporal order judgements in the wake of the attentional blink , 2008 .

[68]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[69]  Marta Kutas,et al.  Mass univariate analysis of event-related brain potentials/fields II: Simulation studies. , 2011, Psychophysiology.

[70]  A. Nobre,et al.  Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations , 2011, Journal of neurophysiology.

[71]  T. Kuhlen,et al.  Horizontal and vertical pseudoneglect in peri- and extrapersonal space , 2010, Brain and Cognition.

[72]  P. Sajda,et al.  Temporal characterization of the neural correlates of perceptual decision making in the human brain. , 2006, Cerebral cortex.

[73]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[74]  Biyu J. He,et al.  Breakdown of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in Spatial Neglect , 2007, Neuron.

[75]  Marc Brysbaert,et al.  Complementary hemispheric specialization for language production and visuospatial attention , 2013, Proceedings of the National Academy of Sciences.

[76]  M. Harvey,et al.  Effects of visible and invisible cueing procedures on perceptual judgments in young and elderly subjects , 2000, Neuropsychologia.

[77]  R. B. Post,et al.  Contributions of object- and space-based mechanisms to line bisection errors , 2001, Neuropsychologia.

[78]  C. Michel,et al.  Noninvasive Localization of Electromagnetic Epileptic Activity. I. Method Descriptions and Simulations , 2004, Brain Topography.

[79]  Patrik Vuilleumier,et al.  Abnormal Attentional Modulation of Retinotopic Cortex in Parietal Patients with Spatial Neglect , 2008, Current Biology.

[80]  M. Harvey,et al.  Effects of visible and invisible cueing on line bisection and Landmark performance in hemispatial neglect , 2002, Neuropsychologia.

[81]  John Duncan,et al.  Modulation of spatial bias in the dual task paradigm: Evidence from patients with unilateral parietal lesions and controls , 2006, Neuropsychologia.

[82]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[83]  Padraic Monaghan,et al.  Hemispheric asymmetries in cognitive modeling: connectionist modeling of unilateral visual neglect. , 2004, Psychological review.

[84]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[85]  R. Knight,et al.  Brain Activity During Landmark and Line Bisection Tasks , 2008, Front. Hum. Neurosci..

[86]  R. Peralta,et al.  Bases biofísicas de la localización de los generadores cerebrales del electroencefalograma: aplicación de un modelo de tipo distribuido a la localización de focos epilépticos , 2004 .

[87]  J. Duncan The locus of interference in the perception of simultaneous stimuli. , 1980, Psychological review.

[88]  M. Corbetta,et al.  Spatial neglect and attention networks. , 2011, Annual review of neuroscience.

[89]  J. Marshall,et al.  Spatial cognition: evidence from visual neglect , 2003, Trends in Cognitive Sciences.

[90]  John J. Foxe,et al.  Visual Perceptual Learning in Human Object Recognition Areas: A Repetition Priming Study Using High-Density Electrical Mapping , 2001, NeuroImage.

[91]  Donatella Spinelli,et al.  Impaired visual processing of contralesional stimuli in neglect patients: a visual-evoked potential study. , 2008, Brain : a journal of neurology.

[92]  Eduardo Martínez-Montes,et al.  Hemispheric modulations of alpha-band power reflect the rightward shift in attention induced by enhanced attentional load , 2009, Neuropsychologia.

[93]  M. Mesulam A cortical network for directed attention and unilateral neglect , 1981, Annals of neurology.

[94]  G. Thut,et al.  Stimulus- and state-dependence of systematic bias in spatial attention: Additive effects of stimulus-size and time-on-task , 2012, Cortex.

[95]  R. C. Roberts,et al.  Differential Effects of Line Length on Bisection Judgements in Hemispatial Neglect , 1995, Cortex.

[96]  C. Kennard,et al.  The anatomy of visual neglect. , 2003, Brain : a journal of neurology.

[97]  M. Saoud,et al.  Finding centre: Ocular and fMRI investigations of bisection and landmark task performance , 2012, Brain Research.