Multiple bound states for the Schroedinger-Poisson problem

In this paper, we study the problem \[ \left\{\begin{array}{@{}l} -\Delta u + u + V(x)u = u^p,\\[3pt] -\Delta V = \lambda u^2, \quad \displaystyle\lim_{|x| \to +\infty} V(x)=0, \end{array}\right. \] where u, V : ℝ3 → ℝ are radial functions, λ > 0 and 1 < p < 5. We give multiplicity results, depending on p and on the parameter λ.

[1]  David Ruiz,et al.  The Schrödinger–Poisson equation under the effect of a nonlinear local term , 2006 .

[2]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[3]  Antonio Ambrosetti,et al.  Nonlinear Analysis and Semilinear Elliptic Problems: Contents , 2007 .

[4]  Norbert J. Mauser,et al.  The Schrödinger-Poisson-X equation , 2001, Appl. Math. Lett..

[5]  L. Jeanjean,et al.  A positive solution for a nonlinear Schrödinger equation on Rn , 2005 .

[6]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[7]  Olivier Bokanowski,et al.  LOCAL APPROXIMATION FOR THE HARTREE–FOCK EXCHANGE POTENTIAL: A DEFORMATION APPROACH , 1999 .

[8]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  Michael Struwe,et al.  On the evolution of harmonic mappings of Riemannian surfaces , 1985 .

[10]  Dimitri Mugnai,et al.  Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  Dimitri Mugnai,et al.  Non-Existence Results for the Coupled Klein-Gordon-Maxwell Equations , 2004 .

[12]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[13]  Wenming Zou,et al.  Variant fountain theorems and their applications , 2001 .

[14]  Juan Soler,et al.  On an Exchange Interaction Model for Quantum Transport: The Schrödinger–Poisson–Slater System , 2003 .

[15]  David Ruiz,et al.  SEMICLASSICAL STATES FOR COUPLED SCHRÖDINGER–MAXWELL EQUATIONS: CONCENTRATION AROUND A SPHERE , 2005 .