Density Approximation Based on Dirac Mixtures with Regard to Nonlinear Estimation and Filtering
暂无分享,去创建一个
[1] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[2] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[3] Uwe D. Hanebeck,et al. Dirac Mixture Density Approximation Based on Minimization of the Weighted Cramer-von Mises Distance , 2006, 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.
[4] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[5] Subhash Challa,et al. Nonlinear filtering via generalized Edgeworth series and Gauss-Hermite quadrature , 2000, IEEE Trans. Signal Process..
[6] Huaiyu Zhu. On Information and Sufficiency , 1997 .
[7] R. Wilcox. Kolmogorov–Smirnov Test , 2005 .
[8] Nils Christophersen,et al. Monte Carlo filters for non-linear state estimation , 2001, Autom..
[9] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[10] Dennis D. Boos,et al. Minimum Distance Estimators for Location and Goodness of Fit , 1981 .
[11] Geir Storvik,et al. Deterministic and Stochastic Particle Filters in State-Space Models , 2001, Sequential Monte Carlo Methods in Practice.
[12] D. Darling. The Kolmogorov-Smirnov, Cramer-von Mises Tests , 1957 .
[13] L. Leemis,et al. Minimum Kolmogorov–Smirnov test statistic parameter estimates , 2006 .
[14] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[15] Uwe D. Hanebeck,et al. Progressive Bayesian estimation for nonlinear discrete-time systems:the filter step for scalar measurements and multidimensional states , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[16] N. Oudjane,et al. Stability and Uniform Particle Approximation of Nonlinear Filters in Case of Non Ergodic Signals , 2005 .
[17] Bernard Hanzon,et al. A differential geometric approach to nonlinear filtering: the projection filter , 1998, IEEE Trans. Autom. Control..