Spike times make sense

[1]  Rie Suzuki,et al.  Bad news from the brain: descending 5-HT pathways that control spinal pain processing. , 2004, Trends in pharmacological sciences.

[2]  R. Straub Complexity of the bi-directional neuroimmune junction in the spleen. , 2004, Trends in pharmacological sciences.

[3]  Kae Nakamura,et al.  Emergence of rhythm during motor learning , 2004, Trends in Cognitive Sciences.

[4]  Jonathan D. Cohen,et al.  Conflict monitoring and anterior cingulate cortex: an update , 2004, Trends in Cognitive Sciences.

[5]  R. Johansson,et al.  First spikes in ensembles of human tactile afferents code complex spatial fingertip events , 2004, Nature Neuroscience.

[6]  A. Delorme,et al.  Early Cortical Orientation Selectivity: How Fast Inhibition Decodes the Order of Spike Latencies , 2003, Journal of Computational Neuroscience.

[7]  M. DeWeese,et al.  Binary Spiking in Auditory Cortex , 2003, The Journal of Neuroscience.

[8]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[9]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[10]  H. Swadlow,et al.  Receptive-field construction in cortical inhibitory interneurons , 2002, Nature Neuroscience.

[11]  M. Diamond,et al.  Population Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[12]  Xiaoqin Wang,et al.  Temporal and rate representations of time-varying signals in the auditory cortex of awake primates , 2001, Nature Neuroscience.

[13]  Ehud Ahissar,et al.  Figuring Space by Time , 2001, Neuron.

[14]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[15]  W. Singer,et al.  Rapid feature selective neuronal synchronization through correlated latency shifting , 2001, Nature Neuroscience.

[16]  Leslie G. Ungerleider,et al.  Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys , 2000, Nature Neuroscience.

[17]  D. Hubel,et al.  Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys , 2000, Nature Neuroscience.

[18]  Wolf Singer,et al.  Time as coding space? , 1999, Current Opinion in Neurobiology.

[19]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[20]  D Kleinfeld,et al.  Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. , 1997, Journal of neurophysiology.

[21]  P. Heil,et al.  Auditory cortical onset responses revisited. I. First-spike timing. , 1997, Journal of neurophysiology.

[22]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[23]  Christof Koch,et al.  Temporal Precision of Spike Trains in Extrastriate Cortex of the Behaving Macaque Monkey , 1999, Neural Computation.

[24]  B. Richmond,et al.  Latency: another potential code for feature binding in striate cortex. , 1996, Journal of neurophysiology.

[25]  R. Christopher deCharms,et al.  Primary cortical representation of sounds by the coordination of action-potential timing , 1996, Nature.

[26]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[27]  Pieter R. Roelfsema,et al.  How Precise is Neuronal Synchronization? , 1995, Neural Computation.

[28]  S. Thorpe,et al.  Dynamics of orientation coding in area V1 of the awake primate , 1993, Visual Neuroscience.

[29]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[30]  Simon J. Thorpe,et al.  Spike arrival times: A highly efficient coding scheme for neural networks , 1990 .