One-Meter Deployable Mesh Reflector for Deep-Space Network Telecommunication at ${X}$ -Band and $Ka$ -Band

This article presents the design and optimization of a deployable 1 m mesh reflector compatible with a 12U-class CubeSat. This antenna is designed for telecommunication and is compatible with NASA’s deep-space network (DSN) at <inline-formula> <tex-math notation="LaTeX">${X}$ </tex-math></inline-formula>-band (i.e., uplink: 7.145–7.19 GHz; downlink: 8.4–8.45 GHz) and <italic>Ka</italic>-band frequencies (i.e., uplink: 34.2–34.7 GHz; downlink: 31.8–32.3 GHz). Three right-handed circularly polarized (RHCP) antennas, both transmit and receive, are introduced here: <inline-formula> <tex-math notation="LaTeX">${X}$ </tex-math></inline-formula>-band only, <italic>Ka</italic>-band only, and <inline-formula> <tex-math notation="LaTeX">${X}$ </tex-math></inline-formula>-/<italic>Ka</italic>-band. For the <inline-formula> <tex-math notation="LaTeX">${X}$ </tex-math></inline-formula>-band-only antenna, a gain of 36.1 and 36.8 dBic is achieved at uplink and downlink frequency bands, respectively. This translates into an aperture efficiency of 72% and 62%. For the <italic>Ka</italic>-band-only antenna, a gain of 48.4 and 48.7 dBic is obtained at downlink and uplink frequency bands, which translate into an aperture efficiency of 62% and 72%, respectively.

[1]  C. Jung-Kubiak,et al.  1.9-THz Multiflare Angle Horn Optimization for Space Instruments , 2015, IEEE Transactions on Terahertz Science and Technology.

[2]  R. Hodges,et al.  CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions , 2016, IEEE Transactions on Antennas and Propagation.

[3]  Ziad S. Haddad,et al.  Raincube: A proposed constellation of precipitation profiling radars in CubeSat , 2014, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[4]  Yahya Rahmat-Samii,et al.  The Deep-Space Network Telecommunication CubeSat Antenna: Using the deployable Ka-band mesh reflector antenna. , 2017, IEEE Antennas and Propagation Magazine.

[5]  Nacer Chahat,et al.  All-Metal Dual-Frequency RHCP High-Gain Antenna for a Potential Europa Lander , 2018, IEEE Transactions on Antennas and Propagation.

[6]  Richard E. Hodges,et al.  Novel deployable reflectarray antennas for CubeSat communications , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[7]  Michael W. Spencer,et al.  SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Jean-Christophe Angevain,et al.  Advanced techniques for grating lobe reduction for large deployable mesh reflector antennas , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[9]  Nacer Chahat,et al.  One meter deployable reflectarray antenna for earth science radars , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[10]  Nacer E. Chahat A mighty antenna from a tiny CubeSat grows , 2018, IEEE Spectrum.

[11]  Ellsworth B Miller,et al.  A deployable reflector , 1994 .

[12]  Nacer Chahat,et al.  A Deployable High-Gain Antenna Bound for Mars: Developing a new folded-panel reflectarray for the first CubeSat mission to Mars. , 2017, IEEE Antennas and Propagation Magazine.

[13]  J. Ruze Antenna tolerance theory—A review , 1966 .

[14]  Yahya Rahmat-Samii,et al.  Advanced Antennas for Small Satellites , 2018, Proceedings of the IEEE.