Thermal expansion, diffusion and melting of Li2O using a compact forcefield derived from ab initio molecular dynamics

This work shows a straightforward procedure to derive forcefields (FFs) which are able to describe the structural, thermal and transport properties of condensed phases. The approach is based on ab initio molecular dynamics trajectories and an empirical calibration such as the melting point. This is demonstrated for lithium oxide using a Buckingham-type potential and optimized effective atomic charges. The present FF reproduces the density and thermal expansion of Li2O very well, including an anomaly related to the known superionic behaviour, i.e. a pre-melting of the Li sublattice at a critical temperature of Tc = 1200 K. Calculations of the diffusion coefficient as a function of temperature show a strong dependence on vacancy concentration for temperatures below Tc, consistent with previous simulations. Extensions to other ionic systems and compositions are made straightforward by the compact form of the FF and the present methodology employed in the parameter fitting.

[1]  R. Juza,et al.  Über Mischkristalle, die ein zweifach und ein dreifach geladenes Anion enthalten , 1957 .

[2]  T. Yanagi,et al.  Self-diffusion coefficient of lithium in lithium oxide , 1979 .

[3]  Hitoshi Watanabe,et al.  Thermal expansion of lithium oxide , 1982 .

[4]  Erich Wimmer,et al.  Total-energy all-electron density functional method for bulk solids and surfaces , 1982 .

[5]  E. Larsen,et al.  Preparation, Characterization, and Melting Point of High‐Purity Lithium Oxide , 1983 .

[6]  L. E. Scales,et al.  Introduction to Non-Linear Optimization , 1985 .

[7]  S. Hull,et al.  The elastic properties of lithium oxide and their variation with temperature , 1988 .

[8]  A. Hagler,et al.  Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Aoki,et al.  First-principles interatomic potential of silica applied to molecular dynamics. , 1988, Physical review letters.

[10]  C. R. A. Catlow,et al.  Interatomic potentials for oxides , 1988 .

[11]  Michael T. Hutchings,et al.  Investigation of thermally induced Li+ ion disorder in Li2O using neutron diffraction , 1991 .

[12]  A. Shluger,et al.  Calculation of adiabatic barriers for cation diffusion in Li2O and LiCl crystals , 1992 .

[13]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[14]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[15]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[16]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[17]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[18]  N. Allan,et al.  Lithium oxide and superionic behaviour - a study using potentials from periodic ab initio calculations , 1998 .

[19]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[20]  Harald P. Pfeiffer,et al.  Lithium and tritium diffusion in lithium oxide (Li , 2000 .

[21]  M. Hayoun,et al.  Derivation and validation of model potentials for Li2O from density-functional theory , 2001 .

[22]  S. Chaplot,et al.  Superionic behavior of lithium oxide Li 2 O : A lattice dynamics and molecular dynamics study , 2004 .

[23]  M C Payne,et al.  "Learn on the fly": a hybrid classical and quantum-mechanical molecular dynamics simulation. , 2004, Physical review letters.

[24]  Paul A. Madden,et al.  The construction and application of a fully flexible computer simulation model for lithium oxide , 2004 .

[25]  Philippe Ungerer,et al.  Applications of Molecular Simulation In the Oil and Gas Industry: Monte Carlo Methods , 2005 .

[26]  C. Freeman,et al.  Use of Force Fields in Materials Modeling , 2007 .

[27]  William J. Weber,et al.  Validation of potential models for Li2O in classical molecular dynamics simulation , 2007 .

[28]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[29]  Fast ion diffusion, superionic conductivity and phase transitions of the nuclear materials UO2 and Li2O , 2009 .

[30]  Satoru Tanaka,et al.  Modeling of Li diffusivity in Li2O by molecular dynamics simulation , 2009 .

[31]  C. Fisher,et al.  Atomic Level Investigations of Lithium Ion Battery Cathode Materials , 2010 .

[32]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[33]  R. Mittal,et al.  Phonon instability and mechanism of superionic conduction in Li 2 O , 2012 .

[34]  M. Azuma,et al.  Negative thermal expansion induced by intermetallic charge transfer , 2015, Science and Technology of Advanced Materials.