ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB-L* z ∼ 7 AND z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION

We study the Spitzer Infrared Array Camera (IRAC) mid-infrared (rest-frame optical) fluxes of 14 newly WFC3/IR-detected z ~ 7 z 850-dropout galaxies and 5z ~ 8 Y 105-dropout galaxies. The WFC3/IR depth and spatial resolution allow accurate removal of contaminating foreground light, enabling reliable flux measurements at 3.6 μm and 4.5 μm. None of the galaxies are detected to [3.6] 26.9 (AB, 2σ), but a stacking analysis reveals a robust detection for the z 850-dropouts and an upper limit for the Y 105-dropouts. We construct average broadband spectral energy distributions using the stacked Advanced Camera for Surveys (ACS), WFC3, and IRAC fluxes and fit stellar population synthesis models to derive mean redshifts, stellar masses, and ages. For the z 850-dropouts, we find z = 6.9+0.1 –0.1, (U – V)rest 0.4, reddening AV = 0, stellar mass M* = 1.2+0.3 –0.6 × 109 M ☉ (Salpeter initial mass function). The best-fit ages ~300 Myr, M/LV 0.2, and SSFR ~1.7 Gyr–1 are similar to values reported for luminous z ~ 7 galaxies, indicating the galaxies are smaller but not much younger. The sub-L* galaxies observed here contribute significantly to the stellar mass density and under favorable conditions may have provided enough photons for sustained reionization at 7 < z < 11. In contrast, the z = 8.3+0.1 –0.2 Y 105-dropouts have stellar masses that are uncertain by 1.5 dex due to the near-complete reliance on far-UV data. Adopting the 2σ upper limit on the M/L(z = 8), the stellar mass density to M UV,AB < –18 declines from ρ*(z = 7) = 3.7+1.4 –1.8 × 106 M ☉ Mpc–3 to ρ*(z = 8) < 8 × 105 M ☉ Mpc–3, following (1 + z)–6 over 3 < z < 8. Lower masses at z = 8 would signify more dramatic evolution, which can be established with deeper IRAC observations, long before the arrival of the James Webb Space Telescope.

[1]  H. Rix,et al.  Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts , 2002, astro-ph/0212236.

[2]  G. Llingworth Spitzer Irac Confirmation of Z 850 -dropout Galaxies in the Hubble Ultra Deep Field: Stellar Masses and Ages at Z ≈ 7 , 2008 .

[3]  J. Schaye,et al.  Keeping the Universe ionized: photoheating and the clumping factor of the high-redshift intergalactic medium , 2008, 0807.3963.

[4]  S. M. Fall,et al.  LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.

[5]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[6]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[7]  K. Bundy,et al.  THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.

[8]  J. Kneib,et al.  A Keck Survey for Gravitationally-Lensed Lyman-alpha Emitters in the Redshift Range 8.5 , 2007, astro-ph/0701279.

[9]  H. Trac,et al.  Radiative Transfer Simulations of Cosmic Reionization. I. Methodology and Initial Results , 2006, astro-ph/0612406.

[10]  Richard S. Ellis,et al.  A Keck Survey for Gravitationally Lensed Lyα Emitters in the Redshift Range 8.5 < z < 10.4: New Constraints on the Contribution of Low-Luminosity Sources to Cosmic Reionization , 2007 .

[11]  Garth D. Illingworth,et al.  z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions , 2008, 0803.0548.

[12]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[13]  P. Dokkum,et al.  Evidence of Cosmic Evolution of the Stellar Initial Mass Function , 2007, 0710.0875.

[14]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[15]  Department of Physics,et al.  accepted for publication in the Astrophysical Journal Luminous Lyman Break Galaxies at z>5 and the Source of , 2003 .

[16]  M. Franx,et al.  Galaxies at z~6: The UV Luminosity Function and Luminosity Density from 506 UDF, UDF-Ps, and GOODS i-dropouts , 2005, astro-ph/0509641.

[17]  Cambridge,et al.  Lyman break galaxies and the star formation rate of the Universe at z≈ 6 , 2003 .

[18]  J. Dunlop,et al.  The luminosity function, halo masses and stellar masses of luminous Lyman-break galaxies at redshifts 5 < z < 6 , 2008, 0805.1335.

[19]  R. Davé,et al.  Constraints on physical properties of z ∼ 6 galaxies using cosmological hydrodynamic simulations , 2006, astro-ph/0607039.

[20]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[21]  IoA,et al.  Spitzer and Hubble Space Telescope Constraints on the Physical Properties of the z ~ 7 Galaxy Strongly Lensed by A2218 , 2004, astro-ph/0411117.

[22]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[23]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[24]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[25]  S. M. Fall,et al.  High-Redshift Extremely Red Objects in the Hubble Space Telescope Ultra Deep Field Revealed by the GOODS Infrared Array Camera Observations , 2004, astro-ph/0408070.

[26]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[27]  R. Dav'e The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function? , 2007, 0710.0381.

[28]  The nature and evolution of the highly ionized near-zones in the absorption spectra of z≃ 6 quasars , 2006, astro-ph/0607331.

[29]  Spitzer IRAC Confirmation of z850-Dropout Galaxies in the Hubble Ultra Deep Field: Stellar Masses and Ages at z 7 , 2006, astro-ph/0608444.

[30]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[31]  R. McMahon,et al.  Near-infrared properties of i-drop galaxies in the Hubble Ultra Deep Field , 2004, astro-ph/0403585.

[32]  P. P. van der Werf,et al.  The Color-Magnitude Distribution of Field Galaxies to z~3: The Evolution and Modeling of the Blue Sequence , 2007, 0705.3325.

[33]  The Stellar Masses and Star Formation Histories of Galaxies at z ≈ 6: Constraints from Spitzer Observations in the Great Observatories Origins Deep Survey , 2006, astro-ph/0604554.

[34]  R. Cen,et al.  IONIZING PHOTON ESCAPE FRACTIONS FROM HIGH-REDSHIFT DWARF GALAXIES , 2008, 0808.2477.

[35]  H. Rix,et al.  What Do We Learn from IRAC Observations of Galaxies at 2 < z < 3.5? , 2006, astro-ph/0609548.

[36]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[37]  Mark Lacy,et al.  Spitzer imaging of i′‐drop galaxies: old stars at z≈ 6 , 2005 .

[38]  M. Mori,et al.  The escape of ionizing photons from supernova-dominated primordial galaxies , 2009, 0906.1658.

[39]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .