A Survey on Position‐Based Simulation Methods in Computer Graphics

The dynamic simulation of mechanical effects has a long history in computer graphics. The classical methods in this field discretize Newton's second law in a variety of Lagrangian or Eulerian ways, and formulate forces appropriate for each mechanical effect: joints for rigid bodies; stretching, shearing or bending for deformable bodies and pressure, or viscosity for fluids, to mention just a few. In the last years, the class of position‐based methods has become popular in the graphics community. These kinds of methods are fast, stable and controllable which make them well‐suited for use in interactive environments. Position‐based methods are not as accurate as force‐based methods in general but they provide visual plausibility. Therefore, the main application areas of these approaches are virtual reality, computer games and special effects in movies. This state‐of‐the‐art report covers the large variety of position‐based methods that were developed in the field of physically based simulation. We will introduce the concept of position‐based dynamics, present dynamic simulation based on shape matching and discuss data‐driven upsampling approaches. Furthermore, we will present several applications for these methods.

[1]  Micky Kelager,et al.  A Triangle Bending Constraint Model for Position-Based Dynamics , 2011 .

[2]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[3]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[4]  Matthias Teschner,et al.  A Geometric Deformation Model for Stable Cloth Simulation , 2008, VRIPHYS.

[5]  Jan Bender,et al.  Robust real-time deformation of incompressible surface meshes , 2011, SCA '11.

[6]  Pieter Peers,et al.  Facial performance synthesis using deformation-driven polynomial displacement maps , 2008, SIGGRAPH 2008.

[7]  Thomas Jakobsen,et al.  Advanced Character Physics , 2003 .

[8]  Theodore Kim,et al.  Closest point turbulence for liquid surfaces , 2013, TOGS.

[9]  Markus H. Gross,et al.  Fast adaptive shape matching deformations , 2008, SCA '08.

[10]  Markus H. Gross,et al.  Pose-space animation and transfer of facial details , 2008, SCA '08.

[11]  Matthias Müller,et al.  Wrinkle meshes , 2010, SCA '10.

[12]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[13]  Yanzhen Wang,et al.  A mass-spring model for surface mesh deformation based on shape matching , 2006, GRAPHITE '06.

[14]  Doug L. James,et al.  Real time physics: class notes , 2008, SIGGRAPH '08.

[15]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[16]  Nuttapong Chentanez,et al.  Long range attachments - a method to simulate inextensible clothing in computer games , 2012, SCA '12.

[17]  Adam W. Bargteil,et al.  Physics-inspired upsampling for cloth simulation in games , 2011, SIGGRAPH 2011.

[18]  Dinesh K. Pai,et al.  ArtDefo: accurate real time deformable objects , 1999, SIGGRAPH.

[19]  Tsuneya Kurihara,et al.  Modeling deformable human hands from medical images , 2004, SCA '04.

[20]  Tomoyuki Nishita,et al.  Chain Shape Matching for Simulating Complex Hairstyles , 2010, Comput. Graph. Forum.

[21]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[22]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[23]  Sebastian Thrun,et al.  Video-based reconstruction of animatable human characters , 2010, ACM Trans. Graph..

[24]  Matthias Müller,et al.  Hierarchical Position Based Dynamics , 2008, VRIPHYS.

[25]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[26]  Miguel A. Otaduy,et al.  Animating Wrinkles by Example on Non-Skinned Cloth , 2013, IEEE Transactions on Visualization and Computer Graphics.

[27]  Eitan Grinspun,et al.  TRACKS: toward directable thin shells , 2007, SIGGRAPH 2007.

[28]  Tae-Yong Kim,et al.  Fast Simulation of Inextensible Hair and Fur , 2012, VRIPHYS.

[29]  Tom Duff,et al.  Matrix animation and polar decomposition , 1992 .

[30]  Thomas Malzbender,et al.  Polynomial texture maps , 2001, SIGGRAPH.

[31]  Hans-Peter Seidel,et al.  Vector field based shape deformations , 2006, ACM Trans. Graph..

[32]  Yao Zhang,et al.  Scan primitives for GPU computing , 2007, GH '07.

[33]  Jos Stam,et al.  Nucleus: Towards a unified dynamics solver for computer graphics , 2009, 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[34]  Xavier Provot,et al.  Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior , 1995 .

[35]  Matthias Harders,et al.  Enriching coarse interactive elastic objects with high-resolution data-driven deformations , 2012, SCA '12.

[36]  Pieter Peers,et al.  Facial performance synthesis using deformation-driven polynomial displacement maps , 2008, SIGGRAPH Asia '08.

[37]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[38]  Jan Bender,et al.  Physically-Based Character Skinning , 2013, VRIPHYS.

[39]  Rüdiger Westermann,et al.  Workshop on Virtual Reality Interaction and Physical Simulation (2005) a Multigrid Framework for Real-time Simulation of Deformable Volumes , 2022 .

[40]  Gabriel Zachmann,et al.  Collision Detection for Deformable Objects , 2004, Comput. Graph. Forum.

[41]  Ming C. Lin,et al.  Collision Detection between Geometric Models: A Survey , 1998 .

[42]  Jan Bender,et al.  Efficient GPU Data Structures and Methods to Solve Sparse Linear Systems in Dynamics Applications , 2013, Comput. Graph. Forum.

[43]  N. Chentanez,et al.  Solid simulation with oriented particles , 2011, SIGGRAPH 2011.

[44]  Jessica K. Hodgins,et al.  Stable spaces for real-time clothing , 2010, ACM Trans. Graph..

[45]  Byung-Uck Kim,et al.  A deformation transformer for real-time cloth animation , 2010, ACM Trans. Graph..

[46]  Nadia Magnenat-Thalmann,et al.  From early draping to haute couture models: 20 years of research , 2005, The Visual Computer.

[47]  Matthias Harders,et al.  Maintaining Large Time Steps in Explicit Finite Element Simulations Using Shape Matching , 2012, IEEE Transactions on Visualization and Computer Graphics.

[48]  Matthias Müller,et al.  A versatile and robust model for geometrically complex deformable solids , 2004, Proceedings Computer Graphics International, 2004..

[49]  Ronald Fedkiw,et al.  Volume conserving finite element simulations of deformable models , 2007, ACM Trans. Graph..

[50]  John C. Platt,et al.  Constraints methods for flexible models , 1988, SIGGRAPH.

[51]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[52]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2005, Eurographics.

[53]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[54]  James F. O'Brien,et al.  Multi-resolution isotropic strain limiting , 2010, SIGGRAPH 2010.

[55]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[56]  Huamin Wang,et al.  Example-based wrinkle synthesis for clothing animation , 2010, SIGGRAPH 2010.

[57]  John Dingliana,et al.  Spacetime vertex constraints for dynamically-based adaptation of motion-captured animation , 2011, SCA '11.

[58]  Raanan Fattal,et al.  Efficient simulation of inextensible cloth , 2007, SIGGRAPH 2007.

[59]  Alla Sheffer,et al.  Animation wrinkling: augmenting coarse cloth simulations with realistic-looking wrinkles , 2010, SIGGRAPH 2010.

[60]  B. D. Rogers,et al.  SMOOTHED PARTICLE HYDRODYNAMICS (SPH) IN CFD , 2014 .

[61]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[62]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[63]  Jan Bender,et al.  Volume Conserving Simulation of Deformable Bodies , 2009, Eurographics.

[64]  Arjan Kuijper,et al.  Multilevel Cloth Simulation using GPU Surface Sampling , 2013, VRIPHYS.

[65]  J. Tessendorf Simulating Ocean Water , 2004 .

[66]  Jan Bender,et al.  Parallel Simulation of Inextensible Cloth , 2008, VRIPHYS.

[67]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[68]  Ronald Fedkiw,et al.  Finite volume methods for the simulation of skeletal muscle , 2003, SCA '03.

[69]  James F. O'Brien,et al.  Fast simulation of mass-spring systems , 2013, ACM Trans. Graph..

[70]  Byung-Uck Kim,et al.  A deformation transformer for real-time cloth animation , 2010, SIGGRAPH 2010.

[71]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[72]  Jeffrey C. Trinkle,et al.  Interactive Simulation of Rigid Body Dynamics in Computer Graphics , 2014, Eurographics.

[73]  Matthias Teschner,et al.  Optimized damping for dynamic simulations , 2009, SCCG.

[74]  Brian Mirtich,et al.  Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.

[75]  Marco Fratarcangeli,et al.  A robust method for real-time thread simulation , 2007, VRST '07.

[76]  Jan Bender,et al.  Fast and stable cloth simulation based on multi-resolution shape matching , 2013, Comput. Graph..

[77]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[78]  Doug L. James,et al.  FastLSM: fast lattice shape matching for robust real-time deformation , 2007, SIGGRAPH 2007.

[79]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[80]  Mathieu Desbrun,et al.  Interactive Animation of Structured Deformable Objects , 1999, Graphics Interface.

[81]  Min-Hyung Choi,et al.  Fast Volume Preservation for a Mass-Spring System , 2006, IEEE Computer Graphics and Applications.

[82]  Brian Mirtich,et al.  A Survey of Deformable Modeling in Computer Graphics , 1997 .