Stirling's approximation and a hidden link between two of Ramanujan's approximations
暂无分享,去创建一个
[1] C. O'Sullivan,et al. Ramanujan’s approximation to the exponential function and generalizations , 2022, The Ramanujan Journal.
[2] C. O’Sullivan. De Moivre and Bell polynomials , 2022, Expositiones Mathematicae.
[3] S. Finch. The On-Line Encyclopedia of Integer Sequences , 2021, The Mathematical Intelligencer.
[4] Amy M. Fu. Some Identities Related to the Second-Order Eulerian Numbers , 2021, 2104.09316.
[5] SPECIAL FUNCTIONS , 2021, Water‐Quality Engineering in Natural Systems.
[6] Grzegorz Rzadkowski,et al. Some applications of the generalized Eulerian numbers , 2019, J. Comb. Theory, Ser. A.
[7] Ira M. Gessel,et al. Lagrange inversion , 2016, J. Comb. Theory, Ser. A.
[8] Miguel A. Méndez,et al. The asymptotic expansion for n! and the Lagrange inversion formula , 2011 .
[9] GergHo Nemes,et al. On the Coefficients of the Asymptotic Expansion of n , 2010, 1003.2907.
[10] H. Volkmer. Factorial series connected with the Lambert function, and a problem posed by Ramanujan , 2008 .
[11] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[12] Daniel W. Lozier,et al. NIST Digital Library of Mathematical Functions , 2003, Annals of Mathematics and Artificial Intelligence.
[13] E. A. Karatsuba,et al. On the asymptotic representation of the Euler gamma function by Ramanujan , 2001 .
[14] Masanobu Kaneko,et al. The Akiyama-Tanigawa algorithm for Bernoulli numbers , 2000 .
[15] B. Berndt. Ramanujan’s Notebooks: Part V , 1997 .
[16] G. Marsaglia,et al. A new derivation of Stirling's approximation of n ! , 1990 .
[17] John Marsaglia. C249. The incomplete gamma function and ramanujan’s rational approximation to e x , 1986 .
[18] B. Berndt. Ramanujan's Notebooks , 1985 .
[19] F. Olver. Asymptotics and Special Functions , 1974 .
[20] J. Wrench,et al. Concerning Two Series for the Gamma Function , 1968 .
[21] L. Comtet,et al. Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .
[22] G. N. Watson. Theorems Stated by Ramanujan (V): Appronimations Connected with cx , 1929 .