Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geother

A novel cogeneration system was proposed and techno-economically investigated, consisting of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger subsystem and a heat pump subsystem. The main purpose is to identify suitable working fluids (among 27 fluids with boiling point temperature ranging from −47.69 to 47.59°C) and optimized cycle parameters for the ORC-based power generation subsystem. The screening criteria include net power output per unit mass flow rate of hot source (Pnet), the ratio of total heat transfer area to net power output (A/Wnet), and electricity production cost (epc). Results show that there exists optimum evaporating temperatures maximizing the Pnet value and minimizing the A/Pnet and epc values. The optimum temperatures vary with different screening criteria and fluids. Optimized fluids based on each screening criteria are not the same. E170, R600 and R141b show the lowest A/Wnet and epc values with averagely 3.78% lower Pnet value than R236ea which presents the largest Pnet value.

[1]  Tsing-Fa Lin,et al.  Condensation heat transfer and pressure drop of refrigerant R-410A flow in a vertical plate heat exchanger , 2005 .

[2]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[3]  Michael R. Moldover,et al.  Thermodynamic properties of CF3CHFCHF2, 1,1,1,2,3,3-hexafluoropropane , 1996 .

[4]  A. Borsukiewicz-Gozdur,et al.  Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius–Rankine cycle , 2007 .

[5]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[6]  Eric W. Lemmon,et al.  Experimental densities, vapor pressures, and critical point, and a fundamental equation of state for dimethyl ether , 2007 .

[7]  Nicolas Galanis,et al.  Parametric study and optimization of a transcritical power cycle using a low temperature source , 2010 .

[8]  Marco Badami,et al.  Design and performance evaluation of an innovative small scale combined cycle cogeneration system , 2008 .

[9]  L. W. Fish,et al.  ISOBUTANE GEOTHERMAL BINARY CYCLE SENSITIVITY ANALYSIS , 1977 .

[10]  Hiroshi Yamaguchi,et al.  Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide , 2007 .

[11]  Chris L. Ward,et al.  Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooli , 2011 .

[12]  H. Miyamoto,et al.  A Thermodynamic Property Model for Fluid-Phase Propane , 2000 .

[13]  Andreas Schuster,et al.  Efficiency optimization potential in supercritical Organic Rankine Cycles , 2010 .

[14]  Marco Badami,et al.  Exergetic analysis of an innovative small scale combined cycle cogeneration system , 2010 .

[15]  D. Yogi Goswami,et al.  Analysis of power and cooling cogeneration using ammonia-water mixture , 2010 .

[16]  Eric W. Lemmon,et al.  An International Standard Formulation for the Thermodynamic Properties of 1,1,1-Trifluoroethane (HFC-143a) for Temperatures From 161 to 450 K and Pressures to 50 MPa , 2000 .

[17]  H. Martin A theoretical approach to predict the performance of chevron-type plate heat exchangers , 1996 .

[18]  Takahisa Yamamoto,et al.  Design and testing of the Organic Rankine Cycle , 2001 .

[19]  Jialing Zhu,et al.  Optimization design of plate heat exchangers (PHE) for geothermal district heating systems , 2004 .

[20]  Michael R. Moldover,et al.  Thermodynamic properties of CHF2CF2CH2F, 1,1,2,2,3-pentafluoropropane , 1996 .

[21]  Chi-Chuan Wang,et al.  Effect of working fluids on organic Rankine cycle for waste heat recovery , 2004 .

[22]  Pavlos S. Georgilakis,et al.  Optimized geothermal binary power cycles , 2008 .

[23]  S. G. Penoncello,et al.  A fundamental equation for dichlorodifluoromethane (R-12) , 1992 .

[24]  D. Brüggemann,et al.  Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation , 2010 .

[25]  N. Lai,et al.  Working fluids for high-temperature organic Rankine cycles , 2007 .

[26]  H. Baehr,et al.  An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2‐Tetrafluoroethane (HFC‐134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa , 1994 .

[27]  Mark O. McLinden,et al.  A Modified Benedict-Webb-Rubin Equation of State for the Thermodynamic Properties of R152a (1,1-difluoroethane) , 1996 .

[28]  Michael R. Moldover,et al.  Compressed and Saturated Liquid Densities for 18 Halogenated Organic Compounds , 1997 .

[29]  Mortaza Yari,et al.  Exergetic analysis of various types of geothermal power plants , 2010 .

[30]  S. Beyerlein,et al.  Application of nonlinear regression in the development of a wide range formulation for HCFC-22 , 1995 .

[31]  M. Cooper Heat Flow Rates in Saturated Nucleate Pool Boiling-A Wide-Ranging Examination Using Reduced Properties , 1984 .

[32]  K. Srinivasan,et al.  Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an Organic Rankine Cycle , 2010 .

[33]  M. M. Rahman,et al.  A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade , 2011 .

[34]  Axel Polt,et al.  Thermophysical Properties of Refrigerants , 1990 .

[35]  O. Nielsen,et al.  Atmospheric chemistry of CF3CFCH2: Kinetics and mechanisms of gas-phase reactions with Cl atoms, OH radicals, and O3 , 2007 .

[36]  Björn Palm,et al.  Plate Heat Exchangers: Calculation Methods for Singleand Two-Phase Flow , 2006 .

[37]  A. Borsukiewicz-Gozdur,et al.  Maximising the working fluid flow as a way of increasing power output of geothermal power plant , 2007 .

[38]  Mark O. McLinden,et al.  An International Standard Equation of State for the Thermodynamic Properties of Refrigerant 123 (2,2‐Dichloro‐1,1,1‐Trifluoroethane) , 1994 .

[39]  Mortaza Yari,et al.  Performance analysis of the different Organic Rankine Cycles (ORCs) using dry fluids , 2009 .

[40]  W. Worek,et al.  Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources , 2007 .

[41]  Eli Rosenthal,et al.  Pressure - Volume - Temperature Behavior of Pentafluoromonochloroethane. , 1966 .

[42]  George Papadakis,et al.  Low­grade heat conversion into power using organic Rankine cycles - A review of various applications , 2011 .

[43]  Andreas Schuster,et al.  Energetic and economic investigation of Organic Rankine Cycle applications , 2009 .

[44]  Yiping Dai,et al.  Parametric analysis for a new combined power and ejector–absorption refrigeration cycle , 2009 .

[45]  Tzu-Chen Hung,et al.  A study of organic working fluids on system efficiency of an ORC using low-grade energy sources , 2010 .

[46]  Agostino Gambarotta,et al.  Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs) , 2010 .

[47]  Daniel Favrat,et al.  Small hybrid solar power system , 2003 .

[48]  Zhaolin Gu,et al.  Optimization of cyclic parameters of a supercritical cycle for geothermal power generation , 2001 .

[49]  Zhaolin Gu,et al.  Performance of supercritical cycles for geothermal binary design , 2002 .

[50]  Mehmet Kanoglu,et al.  Performance and parametric investigation of a binary geothermal power plant by exergy , 2008 .

[51]  Tao Guo,et al.  Comparative analysis of natural and conventional working fluids for use in transcritical Rankine cycle using low‐temperature geothermal source , 2011 .

[52]  B. Mohanty,et al.  Cascading vapour absorption cycle with organic rankine cycle for enhancing geothermal power generation , 1993 .

[53]  Z. Ayub,et al.  Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations , 2010 .

[54]  George Kosmadakis,et al.  Identification of behaviour and evaluation of performance of small scale, low-temperature Organic Rankine Cycle system coupled with a RO desalination unit , 2009 .

[55]  R. Akasaka,et al.  Thermodynamic property modeling for 2,3,3,3-tetrafluoropropene (HFO-1234yf) , 2010 .

[56]  J. Van Roy,et al.  Parametric optimization and performance analysis of a waste heat recovery system using Organic Ranki , 2010 .

[57]  Santanu Bandyopadhyay,et al.  Process integration of organic Rankine cycle , 2009 .