Bayesian outlier detection in Capital Asset Pricing Model

We propose a novel Bayesian optimization procedure for outlier detection in the Capital Asset Pricing Model. We use a parametric product partition model to robustly estimate the systematic risk of an asset. We assume that the returns follow independent normal distributions and we impose a partition structure on the parameters of interest. The partition structure imposed on the parameters induces a corresponding clustering of the returns. We identify via an optimization procedure the partition that best separates standard observations from the atypical ones. The methodology is illustrated with reference to a real dataset, for which we also provide a microeconomic interpretation of the detected outliers.

[1]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[2]  K. Cowles,et al.  CODA: convergence diagnosis and output analysis software for Gibbs sampling output , 1995 .

[3]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[4]  F. Black Capital Market Equilibrium with Restricted Borrowing , 1972 .

[5]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[6]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[7]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[8]  E. Fama,et al.  The Capital Asset Pricing Model: Theory and Evidence , 2003 .

[9]  Pilar Loreto Iglesias,et al.  Bayesian Identification of Outliers and Change-Points in Measurement Error Models , 2005, Adv. Complex Syst..

[10]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .

[11]  Noël Amenc,et al.  Portfolio Theory and Performance Analysis , 2003 .

[12]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[13]  M. Steel,et al.  Robust Bayesian Inference on Scale Parameters , 2001 .

[14]  Jun S. Liu Nonparametric hierarchical Bayes via sequential imputations , 1996 .

[15]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[16]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[17]  J. Mossin EQUILIBRIUM IN A CAPITAL ASSET MARKET , 1966 .

[18]  D. Madigan,et al.  A method for simultaneous variable selection and outlier identification in linear regression , 1996 .

[20]  J. A. Vísek The Least Trimmed Squares – Random Carriers , 1999 .

[21]  F. Quintana,et al.  Bayesian clustering and product partition models , 2003 .

[22]  J. Hartigan,et al.  Product Partition Models for Change Point Problems , 1992 .

[23]  P. Iglesias,et al.  Bayesian robust estimation of systematic risk using product partition models , 2005 .

[24]  S. P. Ellis,et al.  Instability of least squares, least absolute deviation and least median of squares linear regression, with a comment by Stephen Portnoy and Ivan Mizera and a rejoinder by the author , 1998 .

[25]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[26]  Jan Ámos Víšek,et al.  Least trimmed squares , 2000 .

[27]  Anoop Chaturvedi,et al.  Robust Bayesian analysis of the linear regression model , 1996 .