Multiscale Computation and Convergence for Coupled Thermoelastic System in Composite Materials

This paper discusses the multiscale computation for linear time-dependent thermoelastic equations in composite materials with a periodic microstructure. The new contributions presented in this study are the formulation of the correction terms and the strong convergence result with an explicit rate for the second-order multiscale solutions. By application of the Laplace transform, the multiscale method is developed for the static coupled thermoelastic system instead of the original time-dependent equations. Numerical results are reported to demonstrate that the proposed method has a competitive advantage for solving the dynamic thermoelastic system in three-dimensional composite materials. Moreover, the method is highly suitable for parallel computation.

[1]  Louis Nirenberg,et al.  Estimates for elliptic systems from composite material , 2003 .

[2]  Peter Wriggers,et al.  Homogenization in finite thermoelasticity , 2011 .

[3]  Ya Zhang,et al.  Multiscale Asymptotic Method for Maxwell's Equations in Composite Materials , 2010, SIAM J. Numer. Anal..

[4]  Gilles A. Francfort,et al.  Homogenization and mechanical dissipation in thermoviscoelasticity , 1986 .

[5]  A new time domain boundary element formulation for generalized dynamic coupled thermoelasticity , 1998 .

[6]  Xin Wang,et al.  Multiscale finite element algorithm of the eigenvalue problems for the elastic equations in composite materials , 2009 .

[7]  M. Vogelius,et al.  Gradient Estimates for Solutions to Divergence Form Elliptic Equations with Discontinuous Coefficients , 2000 .

[8]  Vorel Jan Multi-scale modeling of composite materials , 2009 .

[9]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[10]  Jun-zhi Cui,et al.  Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains , 2004, Numerische Mathematik.

[11]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[12]  J. Cui,et al.  Multi‐scale analysis and FE computation for the structure of composite materials with small periodic configuration under condition of coupled thermoelasticity , 2004 .

[13]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[14]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[15]  E. Sternberg,et al.  Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity , 1980 .

[16]  Dongwoo Sheen,et al.  A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .

[17]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[18]  J. T. Oden Finite element analysis of nonlinear problems in the dynamical theory of coupled thermoelasticity , 1969 .

[19]  R. Bruce Lindsay,et al.  Nonhomogeneous Media and Vibration Theory, by Enrique Sanchez‐Palencia , 1981 .

[20]  Jim Douglas,et al.  APPROXIMATION OF SCALAR WAVES IN THE SPACE-FREQUENCY DOMAIN , 1994 .

[21]  C. Heil A basis theory primer , 2011 .

[22]  Vidar Thomée,et al.  A high order parallel method for time discretization of parabolic type equations based on Laplace transformation and quadrature , 2005 .

[23]  Dongwoo Sheen,et al.  A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..

[24]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .

[25]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[26]  Da Yu Tzou,et al.  Macro- to Microscale Heat Transfer: The Lagging Behavior , 2014 .

[27]  Yanping Lin,et al.  Multiscale numerical algorithm for 3-D Maxwell's equations with memory effects in composite materials , 2010 .

[28]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[29]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[30]  W. Parnell Coupled Thermoelasticity in a Composite Half-Space , 2006 .

[31]  Gilles A. Francfort,et al.  Homogenization and Linear Thermoelasticity , 1983 .

[32]  Edward C. Ting,et al.  A unified numerical approach for thermal stress waves , 1982 .

[33]  Qiao-Li Dong,et al.  Multiscale asymptotic expansions and numerical algorithms for the wave equations of second order with rapidly oscillating coefficients , 2009 .

[34]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[35]  O. Oleinik,et al.  Mathematical Problems in Elasticity and Homogenization , 2012 .

[36]  Michael E. Taylor,et al.  Partial Differential Equations III , 1996 .