Mutations in ATP 6 V 1 E 1 or ATP 6 V 1 A Cause Autosomal-Recessive Cutis Laxa

Tim Van Damme,1,25 Thatjana Gardeitchik,2,3,25 Miski Mohamed,2,25 Sergio Guerrero-Castillo,4,5,26 Peter Freisinger,6,26 Brecht Guillemyn,1,26 Ariana Kariminejad,7,26 Daisy Dalloyaux,2,5 Sanne van Kraaij,2,5 Dirk J. Lefeber,5,8 Delfien Syx,1 Wouter Steyaert,1 Riet De Rycke,9,10 Alexander Hoischen,3 Erik-Jan Kamsteeg,3 Sunnie Y. Wong,11 Monique van Scherpenzeel,5,8 Payman Jamali,12 Ulrich Brandt,4,5 Leo Nijtmans,4,5 G. Christoph Korenke,13 Brian H.Y. Chung,14 Christopher C.Y. Mak,14 Ingrid Hausser,15 Uwe Kornak,16,17 Björn Fischer-Zirnsak,16,17 Tim M. Strom,18 Thomas Meitinger,18 Yasemin Alanay,19 Gulen E. Utine,20 Peter K.C. Leung,14 Siavash Ghaderi-Sohi,7 Paul Coucke,1 Sofie Symoens,1 Anne De Paepe,1 Christian Thiel,21 Tobias B. Haack,18,22,23 Fransiska Malfait,1,27 Eva Morava,11,24,27 Bert Callewaert,1,27,* and Ron A. Wevers5,27,*

[1]  Christian Gilissen,et al.  ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation , 2016, Nature Communications.

[2]  J. Shendure,et al.  Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue , 2016, Human Genetics.

[3]  A. Hoischen,et al.  TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation. , 2016, American journal of human genetics.

[4]  A. Hoischen,et al.  CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation. , 2016, American journal of human genetics.

[5]  R. Wevers,et al.  High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation. , 2015, Translational research : the journal of laboratory and clinical medicine.

[6]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[7]  M. Forgac,et al.  Recent Insights into the Structure, Regulation, and Function of the V-ATPases. , 2015, Trends in biochemical sciences.

[8]  B. Callewaert,et al.  The Genetics of Soft Connective Tissue Disorders. , 2015, Annual review of genomics and human genetics.

[9]  Johannes E. Schindelin,et al.  The ImageJ ecosystem: An open platform for biomedical image analysis , 2015, Molecular reproduction and development.

[10]  Samir Benlekbir,et al.  Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase , 2015, Nature.

[11]  T. P. Neufeld,et al.  Autophagosome–lysosome fusion is independent of V-ATPase-mediated acidification , 2015, Nature Communications.

[12]  F. Kortüm,et al.  Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome , 2015, Nature Genetics.

[13]  Yang Zhang,et al.  The I-TASSER Suite: protein structure and function prediction , 2014, Nature Methods.

[14]  Jana Marie Schwarz,et al.  MutationTaster2: mutation prediction for the deep-sequencing age , 2014, Nature Methods.

[15]  A. Kariminejad,et al.  Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-Danlos-syndrome-like connective tissue disorder. , 2013, American journal of human genetics.

[16]  D. Chitayat,et al.  Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. , 2013, American journal of human genetics.

[17]  J. Rilstone,et al.  VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy , 2013, Acta Neuropathologica.

[18]  A. Reichert,et al.  Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. , 2012, Cell metabolism.

[19]  S. Mundlos,et al.  Further characterization of ATP6V0A2-related autosomal recessive cutis laxa , 2012, Human Genetics.

[20]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[21]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[22]  H. Freeze,et al.  Identification of Intercellular Cell Adhesion Molecule 1 (ICAM-1) as a Hypoglycosylation Marker in Congenital Disorders of Glycosylation Cells* , 2012, The Journal of Biological Chemistry.

[23]  R. Wevers,et al.  Metabolic cutis laxa syndromes , 2011, Journal of Inherited Metabolic Disease.

[24]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[25]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[26]  R. Wevers,et al.  Vacuolar H+-ATPase meets glycosylation in patients with cutis laxa. , 2009, Biochimica et biophysica acta.

[27]  B. Fernandez,et al.  Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival. , 2009, Human molecular genetics.

[28]  Ron A Wevers,et al.  Autosomal recessive cutis laxa syndrome revisited , 2009, European Journal of Human Genetics.

[29]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[30]  Johan T den Dunnen,et al.  Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker , 2008, Human mutation.

[31]  Michael Forgac,et al.  Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology , 2007, Nature Reviews Molecular Cell Biology.

[32]  Katherine H Kim,et al.  Fibulin-4: a novel gene for an autosomal recessive cutis laxa syndrome. , 2006, American journal of human genetics.

[33]  Shunsuke Kato,et al.  Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods , 2006, Nucleic acids research.

[34]  A. Zharkikh,et al.  Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral , 2005, Journal of Medical Genetics.

[35]  A. Sidow,et al.  Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. , 2005, Genome research.

[36]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[37]  Roland L. Dunbrack Rotamer libraries in the 21st century. , 2002, Current opinion in structural biology.

[38]  A. Yamamoto,et al.  A Proton Pump ATPase with Testis-specific E1-Subunit Isoform Required for Acrosome Acidification* , 2002, The Journal of Biological Chemistry.

[39]  T. Hennet,et al.  Biosynthesis of the Linkage Region of Glycosaminoglycans , 2001, The Journal of Biological Chemistry.

[40]  S. Scherer,et al.  Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing , 2000, Nature Genetics.

[41]  L. Notarangelo,et al.  Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis , 2000, Nature Genetics.

[42]  Ulrich Brandt,et al.  Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex. , 2016, Biochimica et biophysica acta.

[43]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[44]  Gert Matthijs,et al.  Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2 , 2008, Nature Genetics.

[45]  C. Cremers,et al.  Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness , 1999, Nature Genetics.