Skilful nowcasting of extreme precipitation with NowcastNet

[1]  Marcin Andrychowicz,et al.  Deep learning for twelve hour precipitation forecasts , 2022, Nature Communications.

[2]  Mingsheng Long,et al.  Transferability in Deep Learning: A Survey , 2022, ArXiv.

[3]  I. Kevrekidis,et al.  Physics-informed machine learning , 2021, Nature Reviews Physics.

[4]  Raia Hadsell,et al.  Skilful precipitation nowcasting using deep generative models of radar , 2021, Nature.

[5]  Philip S. Yu,et al.  PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  A. H. Weerts,et al.  Spatial and Temporal Evaluation of Radar Rainfall Nowcasting Techniques on 1,533 Events , 2020, Water Resources Research.

[7]  Tobias Scheffer,et al.  RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting , 2020, Geoscientific Model Development.

[8]  Cesare Furlanello,et al.  Precipitation Nowcasting with Orographic Enhanced Stacked Generalization: Improving Deep Learning Predictions on Extreme Events , 2020, Atmosphere.

[9]  U. Germann,et al.  Pysteps: an open-source Python library for probabilistic precipitation nowcasting (v1.0) , 2019, Geoscientific Model Development.

[10]  Jonathan A. Weyn,et al.  The scale dependence of initial‐condition sensitivities in simulations of convective systems over the southeastern United States , 2018, Quarterly Journal of the Royal Meteorological Society.

[11]  A. Pendergrass What precipitation is extreme? , 2018, Science.

[12]  Yuichi Yoshida,et al.  Spectral Normalization for Generative Adversarial Networks , 2018, ICLR.

[13]  Andrei A. Rusu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[14]  Andrea Vedaldi,et al.  Instance Normalization: The Missing Ingredient for Fast Stylization , 2016, ArXiv.

[15]  Jeff W. Brogden,et al.  Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities , 2016 .

[16]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[17]  Aaron C. Courville,et al.  Generative Adversarial Nets , 2014, NIPS.

[18]  Juanzhen Sun,et al.  Use of NWP for Nowcasting Convective Precipitation: Recent Progress and Challenges , 2014 .

[19]  I. Jolliffe,et al.  Forecast verification : a practitioner's guide in atmospheric science , 2011 .

[20]  Jian Zhang,et al.  National mosaic and multi-sensor QPE (NMQ) system description, results, and future plans , 2011 .

[21]  V. Chandrasekar,et al.  The CASA Nowcasting System , 2011 .

[22]  G. Pegram,et al.  Empirical Mode Decomposition in 2-D space and time: a tool for space-time rainfall analysis and nowcasting , 2005 .

[23]  Alexis Berne,et al.  Temporal and spatial resolution of rainfall measurements required for urban hydrology , 2004 .

[24]  I. Zawadzki,et al.  Scale-Dependence of the Predictability of Precipitation from Continental Radar Images. Part I: Description of the Methodology , 2002 .

[25]  A. Seed A Dynamic and Spatial Scaling Approach to Advection Forecasting , 2001 .

[26]  H. Baxter Williams,et al.  A Survey , 1992 .

[27]  Robert K. Crane,et al.  Space‐time structure of rain rate fields , 1990 .

[28]  Tobias Scheffer,et al.  RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting , 2020 .

[29]  Oleg R. Nikitin,et al.  All convolutional neural networks for radar-based precipitation nowcasting , 2019, Procedia Computer Science.

[30]  V. Chandrasekar,et al.  RADAR STORM MOTION ESTIMATION AND BEYOND : A SPECTRAL ALGORITHM AND RADAR OBSERVATION BASED DYNAMIC MODEL , 2005 .

[31]  G. Licht,et al.  Description of Methodology , 2004 .