Image restoration with Poisson–Gaussian mixed noise

This study focuses on the image denoising and deconvolution problem in case of mixed Gaussian–Poisson noise. By using a maximum a posteriori estimator, we derive a new variational formulation whose minimisation provides the desired restored image. The new functional is composed of the total variation (TV) regularisation term, the Kullback–Leibler divergence term for Poisson noise and the norm fidelity term for Gaussian noise. We consider a dual formulation for the TV term, thus changing the minimisation into a minimax problem. A fast iterative algorithm is derived by using the proximal point method to compute the saddle point of the minimax problem. We show the capability of our model both on synthetic examples and on real images of low-count fluorescence microscopy.

[1]  Alessandro Foi,et al.  Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise , 2013, IEEE Transactions on Image Processing.

[2]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[3]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[4]  Junfeng Yang,et al.  ALTERNATING DIRECTION ALGORITHMS FOR TOTAL VARIATION DECONVOLUTION IN IMAGE RECONSTRUCTION , 2009 .

[5]  Alessandra Staglianò,et al.  Analysis of an approximate model for Poisson data reconstruction and a related discrepancy principle , 2011 .

[6]  Xuecheng Tai,et al.  AUGMENTED LAGRANGIAN METHOD FOR TOTAL VARIATION RESTORATION WITH NON-QUADRATIC FIDELITY , 2011 .

[7]  Serena Morigi,et al.  Cascadic Multiresolution Methods for Image Deblurring , 2008, SIAM J. Imaging Sci..

[8]  Ke Chen,et al.  A Nonlinear Multigrid Method for Total Variation Minimization from Image Restoration , 2007, J. Sci. Comput..

[9]  Serena Morigi,et al.  Alternating Krylov subspace image restoration methods , 2012, J. Comput. Appl. Math..

[10]  R. White,et al.  Image recovery from data acquired with a charge-coupled-device camera. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[11]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[12]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[13]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[14]  M. Bertero,et al.  The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise , 2008 .

[15]  R. Chan,et al.  An Adaptive Strategy for the Restoration of Textured Images using Fractional Order Regularization , 2013 .

[16]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[17]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[18]  A. Banerjee Convex Analysis and Optimization , 2006 .

[19]  Raymond H. Chan,et al.  Parameter selection for total-variation-based image restoration using discrepancy principle , 2012, IEEE Transactions on Image Processing.

[20]  Ayan Chakrabarti,et al.  Image Restoration with Signal-dependent Camera Noise , 2012, ArXiv.

[21]  D. Krishnan,et al.  An Efficient Operator-Splitting Method for Noise Removal in Images , 2006 .

[22]  M. Bertero,et al.  Image deblurring with Poisson data: from cells to galaxies , 2009 .

[23]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[24]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[25]  Thierry Blu,et al.  Image Denoising in Mixed Poisson–Gaussian Noise , 2011, IEEE Transactions on Image Processing.

[26]  Michael K. Ng,et al.  Iterative Algorithms Based on Decoupling of Deblurring and Denoising for Image Restoration , 2008, SIAM J. Sci. Comput..

[27]  Martin Burger,et al.  Bregman-EM-TV Methods with Application to Optical Nanoscopy , 2009, SSVM.

[28]  R. Chan,et al.  Minimization and parameter estimation for seminorm regularization models with I-divergence constraints , 2013 .

[29]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[30]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[31]  Serena Morigi,et al.  An interior-point method for large constrained discrete ill-posed problems , 2010, J. Comput. Appl. Math..