Ethylene–octene copolymer (engage)–clay nanocomposites: Preparation and characterization

In this work, preparation and properties of nanoclay modified by organic amine (octadecyl amine, a primary amine) and Engage (ethylene–octene copolymer)–clay nanocomposites are reported. The clay and rubber nanocomposites have been characterized with the help of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The X-ray results suggest that the intergallery spacing of pristine clay increases with the incorporation of the amine. The XRD peak observed in the range of 3–10° for the modified clay also disappears in the rubber nanocomposites at low loading. TEM photographs show exfoliation of the clays in the range of 10–30 nm in Engage. In the FTIR spectra of the nanocomposite, there are common peaks for the virgin rubber as well as those for the clay. Excellent improvement in mechanical properties, like tensile strength, elongation at break, and modulus, is observed on incorporation of the nanoclay in Engage. The storage modulus increases, tan δ peak decreases, and the glass transition temperature is shifted to higher temperature. The results could be explained with the help of morphology, dispersion of the nanofiller, and its interaction with the rubber. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 603–610, 2006

[1]  A. Bhowmick,et al.  Preparation and properties of nanocomposites based on acrylonitrile–butadiene rubber, styrene–butadiene rubber, and polybutadiene rubber , 2004 .

[2]  A. Bhowmick,et al.  Preparation and properties of styrene–butadiene rubber based nanocomposites: The influence of the structural and processing parameters , 2004 .

[3]  A. Bhowmick,et al.  Effect of Chain Length of Amine and Nature and Loading of Clay on Styrene-Butadiene Rubber-Clay Nanocomposites , 2003 .

[4]  D. García-López,et al.  Polypropylene–clay nanocomposites: effect of compatibilizing agents on clay dispersion , 2003 .

[5]  S. K. Srivastava,et al.  Synthesis and characterization of organosoluble, thermoplastic elastomer/clay nanocomposites , 2002 .

[6]  P. Dubois,et al.  Poly(ε-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties , 2002 .

[7]  Philippe Dubois,et al.  Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique: synthesis and mechanical properties , 2002 .

[8]  S. Ray,et al.  Novel electron beam-modified surface-coated silica fillers: Physical and chemical characteristics , 2002 .

[9]  You-liang Hu,et al.  Synthesis and characterization of polypropylene/clay nanocomposites , 2001 .

[10]  T. D. Fornes,et al.  Nylon 6 nanocomposites: the effect of matrix molecular weight , 2001 .

[11]  J. E. Mark,et al.  Clay nanolayer reinforcement of cis‐1,4‐polyisoprene and epoxidized natural rubber , 2001 .

[12]  G. Vigier,et al.  Nanofillers in polymeric matrix : a study on silica reinforced PA6 , 2001 .

[13]  J. Jog,et al.  PP/clay nanocomposites: Effect of clay treatment on morphology and dynamic mechanical properties , 2001 .

[14]  J. S. Shelley,et al.  Reinforcement and environmental degradation of nylon-6/clay nanocomposites , 2001 .

[15]  H. Lindberg,et al.  Synthesis of epoxy–clay nanocomposites. Influence of the nature of the curing agent on structure , 2001 .

[16]  Tsutomu Takeichi,et al.  Studies on thermal and mechanical properties of polyimide-clay nanocomposites , 2001 .

[17]  J. Jog,et al.  PP/clay nanocomposites: A study of crystallization and dynamic mechanical behavior , 2001 .

[18]  J. Kressler,et al.  Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites , 2001 .

[19]  D. R. Paul,et al.  Nylon 6 nanocomposites by melt compounding , 2001 .

[20]  D. M. Lincoln,et al.  Secondary structure and elevated temperature crystallite morphology of nylon-6/layered silicate nanocomposites , 2001 .

[21]  R. Mülhaupt,et al.  Translucent acrylic nanocomposites containing anisotropic laminated nanoparticles derived from intercalated layered silicates , 2000 .

[22]  Thomas J. Pinnavaia,et al.  Nanolayer Reinforcement of Elastomeric Polyurethane , 1998 .

[23]  A. Balazs,et al.  Modeling the phase behavior of polymer-clay composites , 1998 .

[24]  R. Vaia,et al.  Lattice model of polymer melt intercalation in organically-modified layered silicates , 1997 .

[25]  A. Bhowmick,et al.  Thermoplastic Elastomeric Blends of Nylon-6/Acrylate Rubber: Influence of Interaction on Mechanical and Dynamic Mechanical Thermal Properties , 1997 .

[26]  A. Okada,et al.  Preparation and Mechanical Properties of Polypropylene−Clay Hybrids , 1997 .

[27]  Thomas J. Pinnavaia,et al.  Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites , 1995 .

[28]  Toshio Kurauchi,et al.  Interaction of nylon 6‐clay surface and mechanical properties of nylon 6‐clay hybrid , 1995 .

[29]  Toshio Kurauchi,et al.  Mechanical properties of nylon 6-clay hybrid , 1993 .

[30]  Toshio Kurauchi,et al.  Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ε-caprolactam , 1993 .

[31]  E. Giannelis,et al.  Polymer-silicate nanocomposites : Model systems for confined polymers and polymer brushes , 1999 .