A gradient “Ceramic-in-Ionogel” electrolyte with tidal ion flow for ultra-stable lithium metal batteries

[1]  Qingping Wu,et al.  Dual fluorination of polymer electrolyte and conversion-type cathode for high-capacity all-solid-state lithium metal batteries , 2022, Nature communications.

[2]  Liquan Chen,et al.  Polymer Electrolytes Based on Interactions between [Solvent-Li+] Complex and Solvent-Modified Polymer , 2022, SSRN Electronic Journal.

[3]  X. Tao,et al.  Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries , 2022, Science.

[4]  D. Biro,et al.  An Artificial SEI Layer Based on an Inorganic Coordination Polymer with Self‐Healing Ability for Long‐Lived Rechargeable Lithium‐Metal Batteries , 2021, Batteries & Supercaps.

[5]  Chih‐Long Tsai,et al.  Single-Ion-Conducting "Polymer-in-Ceramic" Hybrid Electrolyte with an Intertwined NASICON-Type Nanofiber Skeleton. , 2021, ACS applied materials & interfaces.

[6]  L. Curtiss,et al.  Tailoring Interfaces in Solid-State Batteries Using Interfacial Thermochemistry and Band Alignment , 2021, Chemistry of Materials.

[7]  Suojiang Zhang,et al.  Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery , 2021, Energy Storage Materials.

[8]  Suojiang Zhang,et al.  High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid Polymer Electrolytes with Modulated Ion Transport. , 2021, ACS applied materials & interfaces.

[9]  Yan‐Bing He,et al.  Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. , 2021, Angewandte Chemie.

[10]  Yunhui Huang,et al.  TiO2 Nanofiber-Modified Lithium Metal Composite Anode for Solid-State Lithium Batteries. , 2021, ACS applied materials & interfaces.

[11]  C. Nan,et al.  Tailoring inorganic–polymer composites for the mass production of solid-state batteries , 2021, Nature Reviews Materials.

[12]  Ya‐Xia Yin,et al.  Bridging Interparticle Li+ Conduction in a Soft Ceramic Oxide Electrolyte. , 2021, Journal of the American Chemical Society.

[13]  K. Yan,et al.  Double-Layered Multifunctional Composite Electrolytes for High-Voltage Solid-State Lithium-Metal Batteries. , 2021, ACS applied materials & interfaces.

[14]  Shuru Chen,et al.  Pressure-tailored lithium deposition and dissolution in lithium metal batteries , 2020, Nature Energy.

[15]  Zhenguo Yao,et al.  High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries , 2020 .

[16]  Xiulin Fan,et al.  Countersolvent Electrolytes for Lithium‐Metal Batteries , 2020, Advanced Energy Materials.

[17]  Pinchas Nürnberg,et al.  Li Coordination of a Novel Asymmetric Anion in Ionic Liquid-in-Li Salt Electrolytes. , 2020, The journal of physical chemistry. B.

[18]  Shigang Sun,et al.  Asymmetric-Structure Design of Electrolyte with Flexibility and Lithium Dendrite-Suppression Ability for Solid-State Lithium Batteries. , 2019, ACS applied materials & interfaces.

[19]  M. Armand,et al.  Poly(Ionic Liquid)s-in-Salt Electrolytes with Co-coordination-Assisted Lithium-Ion Transport for Safe Batteries , 2019, Joule.

[20]  Jiayan Luo,et al.  Revisiting the electroplating process for lithium metal anodes. , 2019, Angewandte Chemie.

[21]  Jinlin He,et al.  Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries , 2019, Electrochimica Acta.

[22]  Xiaofei Yang,et al.  Rational Design of Hierarchical “Ceramic‐in‐Polymer” and “Polymer‐in‐Ceramic” Electrolytes for Dendrite‐Free Solid‐State Batteries , 2019, Advanced Energy Materials.

[23]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[24]  E. Maginn,et al.  Solvation Structure and Dynamics of Li+ in Ternary Ionic Liquid-Lithium Salt Electrolytes. , 2018, The journal of physical chemistry. B.

[25]  Xin Guo,et al.  Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites. , 2018, ACS applied materials & interfaces.

[26]  Heng Zhang,et al.  Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. , 2018, Angewandte Chemie.

[27]  William A. Goddard,et al.  Atomistic Description of Ionic Diffusion in PEO–LiTFSI: Effect of Temperature, Molecular Weight, and Ionic Concentration , 2018, Macromolecules.

[28]  Hongkyung Lee,et al.  High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes , 2018, Joule.

[29]  Yutao Li,et al.  PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” , 2017 .

[30]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[31]  J. Mun,et al.  AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability , 2016 .

[32]  B. Scrosati,et al.  Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. , 2016, Angewandte Chemie.

[33]  Youngsik Kim,et al.  Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries. , 2015, ChemSusChem.

[34]  Nadine Voigt,et al.  The mechanism of ionic transport in PAN-based solid polymer electrolytes , 2012 .

[35]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[36]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[37]  Lijuan Song,et al.  Electrical and Lithium Ion Dynamics in Three Main Components of Solid Electrolyte Interphase from Density Functional Theory Study , 2011 .

[38]  Ping Chen,et al.  Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N , 2010 .

[39]  Alvo Aabloo,et al.  Molecular dynamics simulation of the crystalline short-chain polymer system LiPF6·PEO6(Mw∼ 1000) , 2005 .