Robust functional observer design for uncertain fractional-order time-varying delay systems

In this work, existence and design of Robust Functional Observer (RFO) for Uncertain Fractional-Order Systems with Time-Varying-Delay (UFOS-TVD) are addressed. Usually, when the considered system is under the effect of structured uncertainties, this kind of problems, referred as ℓ2-gain rejection, aims at designing a RFO minimizing a given cost function subject to ℓ2-gain rejection constraint, which means, the rejection of the uncertain states effect on the estimated errors. An LMI-based minimization problem for the robust stability is derived based on the indirect Lyapunov and Lyapunov-Krasovskii approaches. Finally, a simulation results are presented to illustrate the performance of the proposed methodology.

[1]  Robert M. Darling,et al.  On the Short‐Time Behavior of Porous Intercalation Electrodes , 1997 .

[2]  D. Matignon Representations en variables d'etat de modeles de guides d'ondes avec derivation fractionnaire , 1994 .

[3]  M. Darouach,et al.  Design of full and reduced orders observers for linear fractional-order systems in the time and frequency domains , 2013, 3rd International Conference on Systems and Control.

[4]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[5]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[6]  Christophe Farges,et al.  Fractional systems state space description: some wrong ideas and proposed solutions , 2014 .

[7]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[8]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[9]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[10]  Yong-Hong Lan,et al.  Observer-based robust control of a (1⩽ a ≪ 2) fractional-order uncertain systems: a linear matrix inequality approach , 2012 .

[11]  Jonathan R. Partington,et al.  Analysis of fractional delay systems of retarded and neutral type , 2002, Autom..

[12]  Mohamed Darouach,et al.  H∞ filters design for fractional-order time-varying delay systems , 2015, 2015 European Control Conference (ECC).

[13]  Igor Podlubny,et al.  Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation , 2001, math/0110241.

[14]  Y. Chen,et al.  Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications , 2011 .

[15]  Chyi Hwang,et al.  A numerical algorithm for stability testing of fractional delay systems , 2006, Autom..

[16]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[17]  Hamid Reza Momeni,et al.  Observer Based Control of a Class of Nonlinear Fractional Order Systems Using LMI , 2012 .

[18]  Y. Chen,et al.  Fractional Order Disturbance Observer for Robust Vibration Suppression , 2004 .

[19]  I. Podlubny Fractional differential equations , 1998 .

[20]  Didier Maquin,et al.  Fault detection, isolation and estimation for Takagi-Sugeno nonlinear systems , 2014, J. Frankl. Inst..

[21]  Mohamed Darouach,et al.  H∞ observer design for linear fractional-order systems in time and frequency domains , 2014, 2014 European Control Conference (ECC).

[22]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[23]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[24]  Mohamed Darouach,et al.  Unknown input observer design for linear fractional-order time-delay systems , 2015 .

[25]  Lianglin Xiong,et al.  Stability Analysis of Linear Fractional Order Neutral System with Multiple Delays by Algebraic Approach , 2011 .

[26]  A. Oustaloup,et al.  Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .

[27]  Enrico Scalas,et al.  Coupled continuous time random walks in finance , 2006 .

[28]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[29]  V. Uchaikin Fractional Derivatives for Physicists and Engineers , 2013 .

[30]  Dominik Sierociuk,et al.  OBSERVER FOR DISCRETE FRACTIONAL ORDER STATE-SPACE SYSTEMS , 2006 .

[31]  Gérard Montseny,et al.  Diffusive representation of pseudo-differential time-operators , 1998 .

[32]  Y. Chen,et al.  Fractional Processes and Fractional-Order Signal Processing , 2012 .

[33]  Reyad El-Khazali,et al.  Fractional-order dynamical models of love , 2007 .

[34]  N. Maamri,et al.  State space modeling of fractional differential equations and the initial condition problem , 2009, 2009 6th International Multi-Conference on Systems, Signals and Devices.

[35]  M. Darouach,et al.  Design of functional fractional-order observers for linear time-delay fractional-order systems in the time domain , 2014, ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014.

[36]  Alain Oustaloup,et al.  A Lyapunov approach to the stability of fractional differential equations , 2009, Signal Process..

[37]  Mohamed Chaabane,et al.  Robust flux and load torque estimation in Induction Machine , 2015, 2015 European Control Conference (ECC).

[38]  C. R. Rao,et al.  Generalized Inverse of Matrices and its Applications , 1972 .

[39]  Aleksandar M. Spasic,et al.  Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach , 2009, Math. Comput. Model..