Time-Spectral Method for Overlapping Meshes

Overset and Cartesian solvers typically employ conventional time-marching schemes to simulate unsteady flows. Temporal pseudospectral schemes have demonstrated the ability to dramatically reduce th...

[1]  Neal Chaderjian,et al.  High Resolution Navier-Stokes Simulation of Rotor Wakes , 2011 .

[2]  Jean-Paul Berrut,et al.  The linear rational collocation method , 2001 .

[3]  Gilbert Strang,et al.  The optimal coefficients in Daubechies wavelets , 1992 .

[4]  R. Peyret Spectral Methods for Incompressible Viscous Flow , 2002 .

[5]  Barry W. Peyton,et al.  Computing connection coefficients of compactly supported wavelets on bounded intervals , 1997 .

[6]  Mark Potsdam,et al.  TURBULENCE MODELING TREATMENT FOR ROTORCRAFT WAKES , 2008 .

[7]  Roger C. Strawn,et al.  CFD Simulations of Tiltrotor Configurations in Hover , 2005 .

[8]  D. J. Mavriplis,et al.  Time Spectral Method for Periodic and Quasi-Periodic Unsteady Computations on Unstructured Meshes , 2010 .

[9]  Kai Hormann,et al.  On the Lebesgue constant of barycentric rational interpolation at equidistant nodes , 2012, Numerische Mathematik.

[10]  Antony Jameson,et al.  OPTIMUM SHAPE DESIGN FOR UNSTEADY FLOWS USING TIME ACCURATE AND NON-LINEAR FREQUENCY DOMAIN METHODS , 2003 .

[11]  Daan Huybrechs,et al.  On the Fourier Extension of Nonperiodic Functions , 2010, SIAM J. Numer. Anal..

[12]  E. Tadmor,et al.  Analysis of the spectral vanishing viscosity method for periodic conservation laws , 1989 .

[13]  Jean-Paul Berrut,et al.  The Linear Rational Pseudospectral Method for Boundary Value Problems , 2001 .

[14]  Scott M. Murman,et al.  Reduced-Frequency Approach for Calculating Dynamic Derivatives , 2007 .

[15]  Georges Klein An Extension of the Floater-Hormann Family of Barycentric Rational Interpolants , 2013, Math. Comput..

[16]  E.J. Candes Compressive Sampling , 2022 .

[17]  Antony Jameson,et al.  Time Spectral Method for Periodic Unsteady Computations over Two- and Three- Dimensional Bodies , 2005 .

[18]  A. Jameson,et al.  Turbomachinery Applications with the Time Spectral Method , 2005 .

[19]  Antony Jameson,et al.  The computational efficiency of non-linear frequency domain methods , 2006, J. Comput. Phys..

[20]  M. Oxley,et al.  Adaptive Harmonic Balance Solutions to Euler's Equation , 2002 .

[21]  A. Jameson,et al.  Application of the Time Spectral Method to Periodic Unsteady Vortex Shedding , 2006 .

[22]  Qiqi Wang,et al.  A Rational Interpolation Scheme with Superpolynomial Rate of Convergence , 2010, SIAM J. Numer. Anal..

[23]  Gianluca Iaccarino,et al.  Helicopter Rotor Design Using a Time-Spectral and Adjoint-Based Method , 2008 .

[24]  Lloyd N. Trefethen,et al.  A Rational Spectral Collocation Method with Adaptively Transformed Chebyshev Grid Points , 2006, SIAM J. Sci. Comput..

[25]  C. M. Dohring,et al.  Experimental and Computational Investigation of the Knoller-Betz Effect , 1998 .

[26]  Oscar P. Bruno,et al.  Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis , 2007, J. Comput. Phys..

[27]  A. Jameson Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings , 1991 .

[28]  Earl H. Dowell,et al.  Unsteady Flow Computation Using a Harmonic Balance Approach Implemented about the OVERFLOW 2 Flow Solver , 2009 .

[29]  Christophe Eric Corre,et al.  Compact Implementation Strategy for a Harmonic Balance Method Within Implicit Flow Solvers , 2013 .

[30]  Seokkwan Yoon,et al.  Computational Analysis of Multi-Rotor Flows , 2016 .

[31]  Kai Hormann,et al.  Barycentric rational interpolation with no poles and high rates of approximation , 2007, Numerische Mathematik.

[32]  S. Nadarajah,et al.  An adaptive Non-Linear Frequency Domain method for viscous flows , 2013 .

[33]  Juan J. Alonso,et al.  Demonstration of Nonlinear Frequency Domain Methods , 2006 .

[34]  Robert H. Nichols,et al.  Solver and Turbulence Model Upgrades to OVERFLOW 2 for Unsteady and High-Speed Applications , 2006 .

[35]  Chad H. Custer,et al.  A Nonlinear Harmonic Balance Solver for an Implicit CFD Code: OVERFLOW 2 , 2009 .

[36]  J. Benek,et al.  A flexible grid embedding technique with application to the Euler equations , 1983 .

[37]  Jeffrey P. Thomas,et al.  Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique , 2002 .

[38]  Olivier Soucy,et al.  A NLFD Method for the Simulation of Periodic Unsteady Flows for Overset Meshes , 2009 .

[39]  Neal M. Chaderjian,et al.  Advances in Rotor Performance and Turbulent Wake Simulation Using DES and Adaptive Mesh Refinement , 2012 .

[40]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[41]  Scott M. Murman,et al.  An Extension of the Time-Spectral Method to Overset Solvers , 2013 .

[42]  Dimitri J. Mavriplis,et al.  Extensions of Time Spectral Methods for Practical Rotorcraft Problems , 2012 .

[43]  R. F. Warming,et al.  An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. [application to Eulerian gasdynamic equations , 1976 .

[44]  M. McMullen,et al.  The application of non-linear frequency domain methods to the Euler and Navier-Stokes equations , 2003 .

[45]  J. Boyd A Comparison of Numerical Algorithms for Fourier Extension of the First, Second, and Third Kinds , 2002 .

[46]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[47]  Lloyd N. Trefethen,et al.  Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples , 2011, SIAM Rev..

[48]  Arthur David Snider,et al.  An Improved Estimate of the Accuracy of Trigonometric Interpolation , 1972 .

[49]  Jean-Paul Berrut,et al.  Exponential convergence of a linear rational interpolant between transformed Chebyshev points , 1999, Math. Comput..

[50]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .