ARG1-expressing microglia show a distinct molecular signature and modulate postnatal development and function of the mouse brain

[1]  J. L. Venero,et al.  The Absence of Caspase-8 in the Dopaminergic System Leads to Mild Autism-like Behavior , 2022, Frontiers in Cell and Developmental Biology.

[2]  Donghui Zhu,et al.  Alzheimer’s pathogenic mechanisms and underlying sex difference , 2021, Cellular and Molecular Life Sciences.

[3]  K. Blomgren,et al.  Multifaceted microglia — key players in primary brain tumour heterogeneity , 2021, Nature Reviews Neurology.

[4]  M. Tremblay,et al.  Brain Ultrastructure: Putting the Pieces Together , 2021, Frontiers in Cell and Developmental Biology.

[5]  J. Lukens,et al.  Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders , 2021, Nature Reviews Immunology.

[6]  B. Joseph,et al.  Selective deletion of Caspase-3 gene in the dopaminergic system exhibits autistic-like behaviour , 2020, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[7]  A. Rodríguez-Moreno,et al.  Astrocyte-mediated switch in spike timing-dependent plasticity during hippocampal development , 2020, Nature Communications.

[8]  Gabriel L. McKinsey,et al.  A new genetic strategy for targeting microglia in development and disease , 2020, eLife.

[9]  K. Blomgren,et al.  Radiation Triggers a Dynamic Sequence of Transient Microglial Alterations in Juvenile Brain. , 2020, Cell reports.

[10]  P. S. St George-Hyslop,et al.  TET2 Regulates the Neuroinflammatory Response in Microglia. , 2019, Cell reports.

[11]  M. Tremblay,et al.  Microglial subtypes: diversity within the microglial community , 2019, The EMBO journal.

[12]  Yvan Saeys,et al.  A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment , 2019, Nature Neuroscience.

[13]  Sara Linse,et al.  Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease , 2019, Acta Neuropathologica.

[14]  Sagar,et al.  Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution , 2019, Nature.

[15]  Tuan Leng Tay,et al.  Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation , 2019, Science.

[16]  Evan Z. Macosko,et al.  Single‐Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell‐State Changes , 2019, Immunity.

[17]  N. Neff,et al.  Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing , 2018, Neuron.

[18]  F. Ginhoux,et al.  Microglia and early brain development: An intimate journey , 2018, Science.

[19]  H. Weiner,et al.  Microglial signatures and their role in health and disease , 2018, Nature Reviews Neuroscience.

[20]  S. Hickman,et al.  Microglia in neurodegeneration , 2018, Nature Neuroscience.

[21]  A. Rodríguez-Moreno,et al.  Adenosine Receptor-Mediated Developmental Loss of Spike Timing-Dependent Depression in the Hippocampus , 2018, Cerebral cortex.

[22]  M. Heneka,et al.  Cannabinoid 1 Receptor Signaling on Hippocampal GABAergic Neurons Influences Microglial Activity , 2018, Front. Mol. Neurosci..

[23]  M. Hockin,et al.  Two distinct ontogenies confer heterogeneity to mouse brain microglia , 2018, Development.

[24]  M. Mesulam,et al.  The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. , 2018, Brain : a journal of neurology.

[25]  M. Tremblay,et al.  Delta Opioid Receptor Signaling Promotes Resilience to Stress Under the Repeated Social Defeat Paradigm in Mice , 2018, Front. Mol. Neurosci..

[26]  J. Kusukawa,et al.  Uncoupled mitochondria quickly shorten along their long axis to form indented spheroids, instead of rings, in a fission-independent manner , 2018, Scientific Reports.

[27]  W. Lamers,et al.  Arginase 1 deletion in myeloid cells affects the inflammatory response in allergic asthma, but not lung mechanics, in female mice , 2017, BMC Pulmonary Medicine.

[28]  A. Waisman,et al.  A novel microglial subset plays a key role in myelinogenesis in developing brain , 2017, The EMBO journal.

[29]  Elly Nedivi,et al.  Spine Dynamics: Are They All the Same? , 2017, Neuron.

[30]  Markus Glatzel,et al.  The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. , 2017, Immunity.

[31]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[32]  R. Machold,et al.  Developmental specification of forebrain cholinergic neurons. , 2017, Developmental biology.

[33]  A. Rodríguez-Moreno,et al.  Mutation of the HERC 1 Ubiquitin Ligase Impairs Associative Learning in the Lateral Amygdala , 2017, Molecular Neurobiology.

[34]  M. Ananth,et al.  Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline , 2016, Neuron.

[35]  K. Blomgren,et al.  Glioma-induced inhibition of caspase-3 in microglia promotes a tumor-supportive phenotype , 2016, Nature Immunology.

[36]  J. Guénet,et al.  The HERC2 ubiquitin ligase is essential for embryonic development and regulates motor coordination , 2016, Oncotarget.

[37]  Cheuk Y. Tang,et al.  Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes , 2016, Cell.

[38]  M. Tremblay,et al.  Correlative Light and Electron Microscopy to Study Microglial Interactions with β-Amyloid Plaques. , 2016, Journal of Visualized Experiments.

[39]  S. Linnarsson,et al.  Origin, fate and dynamics of macrophages at central nervous system interfaces , 2016, Nature Immunology.

[40]  F. C. Bennett,et al.  New tools for studying microglia in the mouse and human CNS , 2016, Proceedings of the National Academy of Sciences.

[41]  C. Limatola,et al.  Dark microglia: A new phenotype predominantly associated with pathological states , 2016, Glia.

[42]  Helmut Kettenmann,et al.  The role of microglia and macrophages in glioma maintenance and progression , 2015, Nature Neuroscience.

[43]  C. Funk,et al.  Arginase-1 deficiency , 2015, Journal of Molecular Medicine.

[44]  Á. M. Carrión,et al.  Updating stored memory requires adult hippocampal neurogenesis , 2015, Scientific Reports.

[45]  Loren J. Martin,et al.  Different immune cells mediate mechanical pain hypersensitivity in male and female mice , 2015, Nature Neuroscience.

[46]  J. Armengol,et al.  The HERC1 E3 Ubiquitin Ligase is essential for normal development and for neurotransmission at the mouse neuromuscular junction , 2015, Cellular and Molecular Life Sciences.

[47]  N. Renier,et al.  iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging , 2014, Cell.

[48]  F. Ginhoux,et al.  Microglia modulate wiring of the embryonic forebrain. , 2014, Cell reports.

[49]  K. Deisseroth,et al.  Advanced CLARITY for rapid and high-resolution imaging of intact tissues , 2014, Nature Protocols.

[50]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[51]  Stefan Klein,et al.  Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease , 2013, Front. Neuroinform..

[52]  J. Yates,et al.  Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor , 2013, Cell.

[53]  Toshiro K. Ohsumi,et al.  The Microglial Sensome Revealed by Direct RNA Sequencing , 2013, Nature Neuroscience.

[54]  M. McCarthy,et al.  Microglia Are Essential to Masculinization of Brain and Behavior , 2013, The Journal of Neuroscience.

[55]  Giulio Iannello,et al.  TeraStitcher - A tool for fast automatic 3D-stitching of teravoxel-sized microscopy images , 2012, BMC Bioinformatics.

[56]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[57]  Ben A. Barres,et al.  Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner , 2012, Neuron.

[58]  S. Blaser,et al.  Arginase I deficiency: severe infantile presentation with hyperammonemia: more common than reported? , 2011, Molecular genetics and metabolism.

[59]  B. Platt,et al.  The cholinergic system and hippocampal plasticity , 2011, Behavioural Brain Research.

[60]  E. Kavanagh,et al.  Caspase signalling controls microglia activation and neurotoxicity , 2011, Nature.

[61]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[62]  Ania K. Majewska,et al.  Microglial Interactions with Synapses Are Modulated by Visual Experience , 2010, PLoS biology.

[63]  A. Majewska,et al.  Preparation of mouse brain tissue for immunoelectron microscopy. , 2010, Journal of visualized experiments : JoVE.

[64]  B. Peterson,et al.  Normal Development of Brain Circuits , 2010, Neuropsychopharmacology.

[65]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[66]  Bernardo L Sabatini,et al.  Anatomical and physiological plasticity of dendritic spines. , 2007, Annual review of neuroscience.

[67]  D. Voehringer,et al.  Chitin induces accumulation in tissue of innate immune cells associated with allergy , 2007, Nature.

[68]  C. Verney,et al.  Entry and Distribution of Microglial Cells in Human Embryonic and Fetal Cerebral Cortex , 2007, Journal of neuropathology and experimental neurology.

[69]  Jonathan R. Whitlock,et al.  Learning Induces Long-Term Potentiation in the Hippocampus , 2006, Science.

[70]  O. Lindvall,et al.  Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning , 2005, Neurobiology of Aging.

[71]  K. Nandy Properties of neuronal lipofuscin pigment in mice , 2004, Acta Neuropathologica.

[72]  L. Descarries,et al.  Comparative analysis of cholinergic innervation in the dorsal hippocampus of adult mouse and rat: A quantitative immunocytochemical study , 2002, Hippocampus.

[73]  M. Sheng,et al.  Dentritic spines : structure, dynamics and regulation , 2001, Nature Reviews Neuroscience.

[74]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[75]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[76]  S. Palay,et al.  The Fine Structure of the Nervous System: Neurons and Their Supporting Cells , 1991 .

[77]  Eric Holtzman,et al.  LYSOSOMES AND GERL IN NORMAL AND CHROMATOLYTIC NEURONS OF THE RAT GANGLION NODOSUM , 1967, The Journal of cell biology.