Turán's theorem in sparse random graphs

We prove the analogue of Turan's Theorem in random graphs with edge probability p(n) > n-1/(k-1.5). With probability 1 - o(1), one needs to delete approximately 1/k-1-fraction of the edges in a random graph in order to destroy all cliques of size k.

[1]  Yoshiharu Kohayakawa,et al.  Turán's Extremal Problem in Random Graphs: Forbidding Even Cycles , 1995, J. Comb. Theory, Ser. B.

[2]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[3]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[4]  Yoshiharu Kohayakawa,et al.  Regular pairs in sparse random graphs I , 2003, Random Struct. Algorithms.

[5]  P. Erdös On the structure of linear graphs , 1946 .

[6]  Yoshiharu Kohayakawa,et al.  OnK4-free subgraphs of random graphs , 1997, Comb..

[7]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[8]  Jeff Kahn,et al.  Asymptotically Good List-Colorings , 1996, J. Comb. Theory A.

[9]  Y. Kohayakawa,et al.  Turán's extremal problem in random graphs: Forbidding odd cycles , 1996, Comb..

[10]  Vojtech Rödl,et al.  Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..

[11]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[12]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[13]  Yoshiharu Kohayakawa,et al.  The Turán Theorem for Random Graphs , 2004, Comb. Probab. Comput..