Modeling stress anisotropy, strength differential, and anisotropic hardening by coupling quadratic and stress-invariant-based yield functions under non-associated flow rule

[1]  J. Min,et al.  Experimental characterization and modeling of complex anisotropic hardening in quenching and partitioning (Q&P) steel subject to biaxial non-proportional loadings , 2022, International Journal of Plasticity.

[2]  J. Yoon,et al.  Analytical description of an asymmetric yield function (Yoon2014) by considering anisotropic hardening under non-associated flow rule , 2021 .

[3]  J. Min,et al.  Evolving asymmetric yield surfaces of quenching and partitioning steels: Characterization and modeling , 2021 .

[4]  H. Qiao,et al.  Effect of twinning on the yield surface shape of Mg alloy plates under in-plane biaxial loading , 2021 .

[5]  Q. Pham,et al.  Thinning prediction of hole-expansion test for DP980 sheet based on a non-associated flow rule , 2021 .

[6]  J. Min,et al.  A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation , 2020 .

[7]  J. Yoon,et al.  Strength modeling of sheet metals from shear to plane strain tension , 2020 .

[8]  J. Yanagimoto,et al.  A non-associated constitutive model considering anisotropic hardening for orthotropic anisotropic materials in sheet metal forming , 2020 .

[9]  J. Yanagimoto,et al.  Constitutive Equations Based on Non-associated Flow Rule for the Analysis of Forming of Anisotropic Sheet Metals , 2020, International Journal of Precision Engineering and Manufacturing-Green Technology.

[10]  J. Yoon,et al.  Combined anisotropic and distortion hardening to describe directional response with Bauschinger effect , 2019, International Journal of Plasticity.

[11]  J. Yoon,et al.  A criterion for general description of anisotropic hardening considering strength differential effect with non-associated flow rule , 2019, International Journal of Plasticity.

[12]  A. Tekkaya,et al.  Investigation of evolving yield surfaces of dual-phase steels , 2019 .

[13]  Heng Li,et al.  Constitutive modeling related uncertainties: Effects on deformation prediction accuracy of sheet metallic materials , 2019, International Journal of Mechanical Sciences.

[14]  J. Yoon,et al.  Kinematic hardening model considering directional hardening response , 2018, International Journal of Plasticity.

[15]  O. Cazacu New yield criteria for isotropic and textured metallic materials , 2018 .

[16]  W. Tong Algebraic Convexity Conditions for Gotoh's Non-Quadratic Yield Function , 2018 .

[17]  C. Raemy,et al.  A flexible modelling approach for capturing plastic anisotropy and strength differential effects exhibited by commercially pure titanium , 2017, International Journal of Solids and Structures.

[18]  J. Yoon,et al.  A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule , 2017 .

[19]  W. Tong,et al.  Comparative evaluation of non-associated quadratic and associated quartic plasticity models for orthotropic sheet metals , 2017 .

[20]  Jun Chen,et al.  A normalized stress invariant-based yield criterion: Modeling and validation , 2017 .

[21]  P. Zeng,et al.  Modeling of the ductile fracture during the sheet forming of aluminum alloy considering non-associated constitutive characteristic , 2017 .

[22]  John E. Carsley,et al.  A non-quadratic constitutive model under non-associated flow rule of sheet metals with anisotropic hardening: Modeling and experimental validation , 2016 .

[23]  W. Tong Application of Gotoh's Orthotropic Yield Function for Modeling Advanced High-Strength Steel Sheets , 2016 .

[24]  B. Williams,et al.  Characterization of anisotropic yield surfaces for titanium sheet using hydrostatic bulging with elliptical dies , 2016 .

[25]  M. Wan,et al.  Constitutive modeling of evolving plasticity in high strength steel sheets , 2016 .

[26]  Jonghun Yoon,et al.  Asymmetric yield function based on the stress invariants for pressure sensitive metals , 2014 .

[27]  Wim De Waele,et al.  Evaluation of anisotropic constitutive models: Mixed anisotropic hardening and non-associated flow r , 2013 .

[28]  J. Yoon,et al.  Consideration of strength differential effect in sheet metals with symmetric yield functions , 2013 .

[29]  D. Steglich,et al.  Material modeling of AZ31 Mg sheet considering variation of r-values and asymmetry of the yield locus , 2012 .

[30]  Frédéric Barlat,et al.  Convex polynomial yield functions , 2010 .

[31]  Kjell Mattiasson,et al.  On constitutive modeling for springback analysis , 2010 .

[32]  Jeong Whan Yoon,et al.  Anisotropic hardening and non-associated flow in proportional loading of sheet metals , 2009 .

[33]  Frédéric Barlat,et al.  An elasto-plastic constitutive model with plastic strain rate potentials for anisotropic cubic metals , 2008 .

[34]  R. H. Wagoner,et al.  Hardening evolution of AZ31B Mg sheet , 2007 .

[35]  Frédéric Barlat,et al.  Orthotropic yield criterion for hexagonal closed packed metals , 2006 .

[36]  Frédéric Barlat,et al.  A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals , 2004 .

[37]  Jeong Whan Yoon,et al.  A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming , 2004 .

[38]  F. Barlat,et al.  Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .

[39]  Thomas B. Stoughton,et al.  A non-associated flow rule for sheet metal forming , 2002 .

[40]  Frédéric Barlat,et al.  Generalization of Drucker's Yield Criterion to Orthotropy , 2001 .

[41]  Ricardo A. Lebensohn,et al.  Mechanical response of zirconium—I. Derivation of a polycrystal constitutive law and finite element analysis , 2001 .

[42]  Dong-Yol Yang,et al.  Earing predictions based on asymmetric nonquadratic yield function , 2000 .

[43]  F. Barlat,et al.  Yield function development for aluminum alloy sheets , 1997 .

[44]  Dong-Yol Yang,et al.  Finite element method for sheet forming based on an anisotropic strain-rate potential and the convected coordinate system , 1995 .

[45]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[46]  John E. Prussing,et al.  The principal minor test for semidefinite matrices , 1986 .

[47]  O. Richmond,et al.  The effect of pressure on the flow stress of metals , 1984 .

[48]  O. Richmond,et al.  Pressure Dependence of Yielding and Associated Volume Expansion in Tempered Martensite. , 1975 .

[49]  W. Hosford A Generalized Isotropic Yield Criterion , 1972 .

[50]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[51]  R. Mises Mechanik der festen Körper im plastisch- deformablen Zustand , 1913 .