Classification of amyloid status using machine learning with histograms of oriented 3D gradients

[1]  D. Mankoff,et al.  Use of Standardized Uptake Value Ratios Decreases Interreader Variability of [18F] Florbetapir PET Brain Scan Interpretation , 2015, American Journal of Neuroradiology.

[2]  K. Frey Amyloid Imaging in Dementia: Contribution or Confusion? , 2015, The Journal of Nuclear Medicine.

[3]  Jerome Declerck,et al.  Quantification of 18F-florbetapir PET: comparison of two analysis methods , 2015, European Journal of Nuclear Medicine and Molecular Imaging.

[4]  Robert A. Koeppe,et al.  The Centiloid Project: Standardizing quantitative amyloid plaque estimation by PET , 2015, Alzheimer's & Dementia.

[5]  J. Schnabel,et al.  Investigation of Single- Versus Joint-Modality PET-MR Registration for 18F-Florbetapir Quantification: Application to Alzheimer’s Disease , 2015 .

[6]  Michael Pontecorvo,et al.  Can incorporation of a quantitative estimate of cortical to cerebellar SUVr as an adjunct to visual interpretation improve the accuracy and reliability of florbetapir PET scan interpretation , 2014 .

[7]  Lisa A. Weissfeld,et al.  Classification of amyloid-positivity in controls: Comparison of visual read and quantitative approaches , 2013, NeuroImage.

[8]  M. Mintun,et al.  Amyloid-β Imaging with Pittsburgh Compound B and Florbetapir: Comparing Radiotracers and Quantification Methods , 2013, The Journal of Nuclear Medicine.

[9]  Patrick Dupont,et al.  Binary classification of 18F-flutemetamol PET using machine learning: Comparison with visual reads and structural MRI , 2013, NeuroImage.

[10]  Jerome Declerck,et al.  An automatic method for the quantification of uptake with Florbetapir imaging , 2012 .

[11]  M. Mintun,et al.  Performance Characteristics of Amyloid PET with Florbetapir F 18 in Patients with Alzheimer's Disease and Cognitively Normal Subjects , 2012, The Journal of Nuclear Medicine.

[12]  FDA approves 18F-florbetapir PET agent. , 2012, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[13]  Kewei Chen,et al.  Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. , 2011, Archives of neurology.

[14]  John Seibyl,et al.  Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study , 2011, The Lancet Neurology.

[15]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[16]  Eveliina Arponen,et al.  Visual assessment of [11C]PIB PET in patients with cognitive impairment , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[17]  D. Louis Collins,et al.  Feature-based morphometry: Discovering group-related anatomical patterns , 2010, NeuroImage.

[18]  M. Weiner,et al.  Relationships between biomarkers in aging and dementia , 2009, Neurology.

[19]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[20]  Cordelia Schmid,et al.  A Spatio-Temporal Descriptor Based on 3D-Gradients , 2008, BMVC.

[21]  C. Jack,et al.  11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. , 2008, Brain : a journal of neurology.

[22]  C. Rowe,et al.  Imaging of amyloid β in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism , 2008, The Lancet Neurology.

[23]  C. Jack,et al.  11 C PiB and structural MRI provide complementary information in imaging of Alzheimer ’ s disease and amnestic mild cognitive impairment , 2008 .

[24]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[25]  W. Klunk,et al.  Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound‐B , 2004, Annals of neurology.

[26]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[27]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.

[28]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[29]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[30]  D. Louis Collins,et al.  Application of Information Technology: A Four-Dimensional Probabilistic Atlas of the Human Brain , 2001, J. Am. Medical Informatics Assoc..

[31]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[32]  Serge J. Belongie,et al.  Matching with shape contexts , 2000, 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries.

[33]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[34]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[35]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.