Personalized Web Search Using Clickthrough Data and Web Page Rating

Personalization of Web search is to carry out retrieval for each user incorporating his/her interests. We propose a novel technique to construct personalized information retrieval model from the users’ clickthrough data and Web page ratings. This model builds on the user-based collaborative filtering technology and the top-N resource recommending algorithm, which consists of three parts: user profile, user-based collaborative filtering, and the personalized search model. Firstly, we conduct user’s preference score to construct the user profile from clicked sequence score and Web page rating. Then it attains similar users with a given user by user-based collaborative filtering algorithm and calculates the recommendable Web page scoring value. Finally, personalized informaion retrieval be modeled by three case applies (rating information for the user himself; at least rating information by similar users; not make use of any rating information). Experimental results indicate that our technique significantly improves the search performance.

[1]  Lyle Ungar KDD-2006 : proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 20-23, 2006, Philadelphia, PA, USA , 2006 .

[2]  Jun Wang,et al.  Unifying user-based and item-based collaborative filtering approaches by similarity fusion , 2006, SIGIR.

[3]  Filip Radlinski,et al.  Search Engines that Learn from Implicit Feedback , 2007, Computer.

[4]  ChengXiang Zhai,et al.  Learn from web search logs to organize search results , 2007, SIGIR.

[5]  Georgia Koutrika,et al.  Personalized Systems: Models and Methods from an IR and DB Perspective , 2005, VLDB.

[6]  Qiang Yang,et al.  Mining Web Query Hierarchies from Clickthrough Data , 2007, AAAI.

[7]  Ji-Rong Wen,et al.  Query clustering using user logs , 2002, TOIS.

[8]  Ji-Rong Wen,et al.  WWW 2007 / Track: Search Session: Personalization A Largescale Evaluation and Analysis of Personalized Search Strategies ABSTRACT , 2022 .

[9]  Paul-Alexandru Chirita,et al.  Personalized query expansion for the web , 2007, SIGIR.

[10]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[11]  Virgílio A. F. Almeida,et al.  A community-aware search engine , 2004, WWW '04.

[12]  Clement T. Yu,et al.  Personalized web search by mapping user queries to categories , 2002, CIKM '02.

[13]  Susan T. Dumais,et al.  Personalizing Search via Automated Analysis of Interests and Activities , 2005, SIGIR.

[14]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[15]  Ioannis Konstas,et al.  On social networks and collaborative recommendation , 2009, SIGIR.

[16]  Wei-Ying Ma,et al.  Optimizing web search using web click-through data , 2004, CIKM '04.

[17]  Feng Qiu,et al.  Automatic identification of user interest for personalized search , 2006, WWW '06.

[18]  Ji-Rong Wen,et al.  Clustering user queries of a search engine , 2001, WWW '01.

[19]  Nicholas J. Belkin,et al.  Helping people find what they don't know , 2000, CACM.

[20]  Doug Beeferman,et al.  Agglomerative clustering of a search engine query log , 2000, KDD '00.

[21]  Larry Fitzpatrick,et al.  Automatic feedback using past queries: social searching? , 1997, SIGIR '97.

[22]  Jaime Teevan,et al.  Information re-retrieval: repeat queries in Yahoo's logs , 2007, SIGIR.

[23]  Benjamin Van Durme,et al.  What You Seek Is What You Get: Extraction of Class Attributes from Query Logs , 2007, IJCAI.

[24]  Yen-Jen Oyang,et al.  Relevant term suggestion in interactive web search based on contextual information in query session logs , 2003, J. Assoc. Inf. Sci. Technol..

[25]  Qiang Yang,et al.  Web-page summarization using clickthrough data , 2005, SIGIR '05.

[26]  Wei-Ying Ma,et al.  Query Expansion by Mining User Logs , 2003, IEEE Trans. Knowl. Data Eng..

[27]  ChengXiang Zhai,et al.  Mining long-term search history to improve search accuracy , 2006, KDD '06.

[28]  Michael R. Lyu,et al.  Learning latent semantic relations from clickthrough data for query suggestion , 2008, CIKM '08.

[29]  Otis Gospodnetic,et al.  Lucene in Action , 2004 .

[30]  Masatoshi Yoshikawa,et al.  Adaptive web search based on user profile constructed without any effort from users , 2004, WWW '04.

[31]  Huan Liu,et al.  CubeSVD: a novel approach to personalized Web search , 2005, WWW '05.

[32]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.