Mathematical and numerical modelling of shallow water flow

This paper deals with shallow water equations. We discuss the mathematical model, the admissible boundary conditions, some popular numerical methods in the specialized literature, as well as we propose new approaches based on fractional step and finite element methods.

[1]  G. Stelling,et al.  A fully implicit splitting method for accurate tidal computations , 1988 .

[2]  P. Lax,et al.  Systems of conservation laws , 1960 .

[3]  Roy A. Walters,et al.  Numerically induced oscillations in finite element approximations to the shallow water equations , 1983 .

[4]  Arne Sundström,et al.  Computationally efficient schemes and boundary conditions for a fine-mesh barotropic model based on the shallow-water equations , 1973 .

[5]  G. Whitham Linear and non linear waves , 1974 .

[6]  J. Oliger,et al.  Theoretical and practical aspects of some initial-boundary value problems in fluid dynamics , 1976 .

[7]  O. Zienkiewicz,et al.  Shallow water problems: A general explicit formulation , 1986 .

[8]  Vincenzo Casulli,et al.  Semi-implicit finite difference methods for the two-dimensional shallow water equation , 1990 .

[9]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[10]  G. Stelling,et al.  On the construction of computational methods for shallow water flow problems , 1983 .

[11]  Nicole Goutal,et al.  TELEMAC: A new numerical model for solving shallow water equations , 1991 .

[12]  Forrest M. Holly,et al.  New Method for Tidal Current Computation , 1982 .

[13]  A. Sielecki AN ENERGY-CONSERVING DIFFERENCE SCHEME FOR THE STORM SURGE EQUATIONS1 , 1968 .

[14]  Alfio Quarteroni,et al.  Coupling of viscous and inviscid Stokes equations via a domain decomposition method for finite elements , 1991 .

[15]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Systems of Conservation Laws: Spectral Collocation Approximations , 1990, SIAM J. Sci. Comput..

[16]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[17]  H. Kreiss Initial boundary value problems for hyperbolic systems , 1970 .