Parallel rendering of 3D AMR data on the SGI/Cray T3E

This paper describes work-in-progress on developing parallel visualization strategies for 3D Adaptive Mesh Refinement (AMR) data. AMR is a simple and powerful tool for modeling many important scientific and engineering problems. However visualization tools for 3D AMR data are not generally available. Converting AMR data onto a uniform mesh would result in high storage requirements, and rendering the uniform-mesh data on an average graphics workstation can be painfully slow if not impossible. The adaptive nature of the embedded mesh demands sophisticated visualization calculations. In this work, we compare the performance and storage requirements of a parallel volume renderer for regular-mesh data with a new parallel renderer based on adaptive sampling. While both renderers can achieve interactive visualization, the new approach offers significant performance gains, as indicated by our experiments on the SGI/Cray T3E.

[1]  Cauligi S. Raghavendra,et al.  Image Composition Schemes for Sort-Last Polygon Rendering on 2D Mesh Multicomputers , 1996, IEEE Trans. Vis. Comput. Graph..

[2]  Marc Levoy,et al.  Volume rendering on scalable shared-memory MIMD architectures , 1992, VVS.

[3]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[4]  U. Neumann Parallel volume-rendering algorithm performance on mesh-connected multicomputers , 1993, Proceedings of 1993 IEEE Parallel Rendering Symposium.

[5]  Henry Fuchs,et al.  A sorting classification of parallel rendering , 1994, IEEE Computer Graphics and Applications.

[6]  B. Corrie,et al.  Parallel volume rendering and data coherence , 1993, Proceedings of 1993 IEEE Parallel Rendering Symposium.

[7]  J. Challinger Scalable parallel volume raycasting for nonrectilinear computational grids , 1993, Proceedings of 1993 IEEE Parallel Rendering Symposium.

[8]  Kwan-Liu Ma,et al.  Volume seeds: A volume exploration technique , 1991, Comput. Animat. Virtual Worlds.

[9]  P. Peggy Li,et al.  ParVox: a parallel splatting volume rendering system for distributed visualization , 1997, PRS '97.

[10]  S. Whitman,et al.  ParVox-a parallel splatting volume rendering system for distributed visualization , 1997, Proceedings IEEE Symposium on Parallel Rendering (PRS'97).

[11]  Philippe Lacroute,et al.  Real-time volume rendering on shared memory multiprocessors using the shear-warp factorization , 1995 .

[12]  M.E. Palmer,et al.  Exploiting deep parallel memory hierarchies for ray casting volume rendering , 1997, Proceedings IEEE Symposium on Parallel Rendering (PRS'97).

[13]  Gordon Stoll,et al.  Data parallel volume rendering as line drawing , 1992, VVS.

[14]  William M. Hsu,et al.  Segmented ray casting for data parallel volume rendering , 1993, Proceedings of 1993 IEEE Parallel Rendering Symposium.

[15]  Kwan-Liu Ma,et al.  Parallel volume rendering using binary-swap compositing , 1994, IEEE Computer Graphics and Applications.

[16]  Jane Wilhelms,et al.  Hierarchical and parallelizable direct volume rendering for irregular and multiple grids , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[17]  Ulrich Neumann Volume reconstruction and parallel rendering algorithms: a comparative analysis , 1993 .

[18]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[19]  Peter L. Williams Parallel Volume Rendering Finite Element Data , 1993 .

[20]  Minesh B. Amin,et al.  Fast volume rendering using an efficient, scalable parallel formulation of the shear-warp algorithm , 1995, PRS.

[21]  Kwan-Liu Ma,et al.  Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures , 1995, PRS.

[22]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[23]  Tadao Nakamura,et al.  Parallel processing of the shear-warp factorization with the binary-swap method on a distributed-memory multiprocessor system , 1997, PRS '97.